• Title/Summary/Keyword: Kompsat-3A

Search Result 375, Processing Time 0.023 seconds

A Study on Deep Learning Optimization by Land Cover Classification Item Using Satellite Imagery (위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구)

  • Lee, Seong-Hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2020
  • This study is a study on classifying land cover by applying high-resolution satellite images to deep learning algorithms and verifying the performance of algorithms for each spatial object. For this, the Fully Convolutional Network-based algorithm was selected, and a dataset was constructed using Kompasat-3 satellite images, land cover maps, and forest maps. By applying the constructed data set to the algorithm, each optimal hyperparameter was calculated. Final classification was performed after hyperparameter optimization, and the overall accuracy of DeeplabV3+ was calculated the highest at 81.7%. However, when looking at the accuracy of each category, SegNet showed the best performance in roads and buildings, and U-Net showed the highest accuracy in hardwood trees and discussion items. In the case of Deeplab V3+, it performed better than the other two models in fields, facility cultivation, and grassland. Through the results, the limitations of applying one algorithm for land cover classification were confirmed, and if an appropriate algorithm for each spatial object is applied in the future, it is expected that high quality land cover classification results can be produced.

Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images (Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2011-2025
    • /
    • 2021
  • In high-resolution satellite image classification, when the color values of pixels belonging to one class are different, such as buildings with various colors, it is difficult to determine the color information representing the class. In this paper, to solve the problem of determining the representative color information of a class, we propose a method to divide the color channel of HSV (Hue Saturation Value) and perform object-based classification. To this end, after transforming the input image of the RGB color space into the components of the HSV color space, the Hue component is divided into subchannels at regular intervals. The minimum distance-based image classification is performed for each hue subchannel, and the classification result is combined with the image segmentation result. As a result of applying the proposed method to KOMPSAT-3A imagery, the overall accuracy was 84.97% and the kappa coefficient was 77.56%, and the classification accuracy was improved by more than 10% compared to a commercial software.

A Study on Enhancement of Orbit Prediction Precision for Space Objects Using TLE (TLE를 이용한 우주물체 궤도예측 정밀도 향상 연구)

  • Yim, Hyeonjeong;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.270-278
    • /
    • 2014
  • This paper describes an improvement of space objects orbit prediction. To screen possible collisions between operational satellites and space objects, the TLE (Two-Line Element) was used as pseudo-measurement and than the orbit determination and orbit prediction were performed through the flight dynamics system. For determining the orbits, the state vectors were assumed by a series of TLEs within a certain period. The propagation error was analyzed according to the fitting period and a number of pseudo-observations. In order to find out the improvement of orbit prediction with the proposed method, KOMPSAT-2, 3 having the precise orbit in the meter-level range were first applied. Then the result applied to space objects under the same conditions was analyzed. As a result of the RMS error comparison with the orbit prediction of space object, the precision of orbit prediction was improved by approximately 90% for seven days prediction. The improved orbit prediction of space objects can be utilized in the daily analysis for initial screening of the close space objects at high risk.

The Contents of SatDSiG and Its Implications for Korea (독일 위성자료보안법의 내용 및 시사점)

  • JUNG, Yungjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.60-65
    • /
    • 2019
  • TerraSAR-X, launched in June 2007, and TanDEM-X, June 2010, are remote-sensing satellites with 1M resolution that are capable of observing the ground even during the nighttime and poor weather conditions. The two satellites had been developed under a public-private partnership between the German Aerospace Centre and Airbus in the interest of the commercial marketing for German satellite data. However, the data of high-grade earth remote-sensing system, such as those of the satellites, has been produced by a military satellite and thus used under limited circumstances in Germany. Therefore, a legislation to commercialize the German satellite data and to protect its national security is needed. For this, SatDSiG was enacted in December 2007. Thus this article will contain the main contents of SatDSiG and its implication for Korea, which stared to export data of Kompsat 3, 3A and 5 in 2018.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Development of Regional Information Contents for the local Government on the basis of GIS and Satellite Images (지방정부의 지역관리를 위한 GIS 및 위성영상기반의 지역정보콘텐츠 개발)

  • 김항집;서동조
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • It was investigated to develop the contents for the local government for the purpose of providing various and correct information. Especially it was focused to take advantage spatial information techniques, Geographic Information Systems and Remote Sensing. The research site for this study was Muan-gun located at the south-western part of Korea and this site has very high opportunities to became the central point for the economical and tourist industry. The regional information contents for Muan-gun was developed and composed of three elements; internet related, geographic information related and satellite image related elements. These contents will make a contribution for the local government to present the regional information effectively and efficiently.

  • PDF

Simulation Study on GEO-KOMPSAT Operational Orbit Injection (정지궤도 복합위성 운용궤도 진입과정 시뮬레이션 연구)

  • Park, Bong-Kyu;Yang, Koon-Ho;Lee, Sang-Cherl
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2011
  • After launch, in order to inject the geostationary satellite into its operational orbit, the perigee altitude are forced to be raised to geostationary altitude by firing onboard LAE(Liquid Apogee Engine) at apogee of the transfer orbit. In this process, the LAE burn is divided into three or four separated burns in order to control the orbit very precisely by giving feedback the determined orbit informations and to inject the satellite in predefined longitude. This paper proposes an algorithm to determine LAE firing time slots and ${\Delta}V$ vectors under assumption of impulsive LAE burning, and additionally, a method to compensate errors induced by continuous burning. And computer simulations have been performed to validate proposed algorithms.

Building Change Detection Methodology in Urban Area from Single Satellite Image (단일위성영상 기반 도심지 건물변화탐지 방안)

  • Seunghee Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1097-1109
    • /
    • 2023
  • Urban is an area where small-scale changes to individual buildings occur frequently. An existing urban building database requires periodic updating to increase its usability. However, there are limitations in data collection for building changes over a wide urban. In this study, we check the possibility of detecting building changes and updating a building database by using satellite images that can capture a wide urban region by a single image. For this purpose, building areas in a satellite image are first extracted by projecting 3D coordinates of building corners available in a building database onto the image. Building areas are then divided into roof and facade areas. By comparing textures of the roof areas projected, building changes such as height change or building removal can be detected. New height values are estimated by adjusting building heights until projected roofs align to actual roofs observed in the image. If the projected image appeared in the image while no building is observed, it corresponds to a demolished building. By checking buildings in the original image whose roofs and facades areas are not projected, new buildings are identified. Based on these results, the building database is updated by the three categories of height update, building deletion, or new building creation. This method was tested with a KOMPSAT-3A image over Incheon Metropolitan City and Incheon building database available in public. Building change detection and building database update was carried out. Updated building corners were then projected to another KOMPSAT-3 image. It was confirmed that building areas projected by updated building information agreed with actual buildings in the image very well. Through this study, the possibility of semi-automatic building change detection and building database update based on single satellite image was confirmed. In the future, follow-up research is needed on technology to enhance computational automation of the proposed method.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.