• Title/Summary/Keyword: Kompsat-2 satellite image

Search Result 239, Processing Time 0.021 seconds

STUDY ON THE GRID REFERENCE SYSTEM FOR KOMPSAT-3 IMAGERY

  • Kang, Chi-Ho;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.486-488
    • /
    • 2007
  • The Grid Reference System, which was firstly used in SPOT series, has been successfully adapted in KOMPSAT-1 and KOMPSAT-2 program, which identifies the geographical location to make image collection plans and manage the database of satellite images. Each Grid Reference System for KOMPSAT-1 and KOMPSAT-2 was designed based on system parameters related to each KOMPSAT-1 and KOMPSAT-2 and this fact leads to the need for the design of the Grid Reference System for KOMPSAT-3 (KGRS-3, hereafter), which reflects system parameters for KOMPSAT-3. The (K, J) coordinate system has been defined as the Grid Reference System for KOMPSAT-3 using heritages from KOMPSAT-1 and KOMPSAT-2 programs. The numbering of K begins with the prime meridian of K = 1 with running eastward on earth increasingly, and the numbering of J uses a value of J = 1000 at all points on the equator and begin with running northward increasingly. The Grid Reference System for KOMPSAT-3 is to be implemented in Ground Segment of KOMPSAT-3 system.

  • PDF

The Analysis on the relation between the Compression Method and the Performance of MSC(Multi-Spectral Camera) Image data

  • Yong, Sang-Soon;Choi, Myung-Jin;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.530-532
    • /
    • 2007
  • Multi-Spectral Camera(MSC) is a main payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). The compression method on KOMPSAT-2 MSC was selected and used to match EOS input rate and PDTS output data rate on MSC image data chain. At once the MSC performance was carefully handled to minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP and Cal./Val.(Calibration and Validation) phase. In this paper, on-orbit image data chain in MSC and image data processing on KGS including general MSC description is briefly described. The influences on image performance between on-board compression algorithms and between performance restoration methods in ground station are analyzed and discussed.

  • PDF

A Study on Empirical Method Analysis of Impervious Surface Using KOMPSAT-2 Image (KOMPSAT-2 위성영상을 이용한 불투수지도작성 방법에 관한 실증연구)

  • Bae, Da-Hye;Lee, Jae-Yil;Ko, Chang-Hwan;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2011
  • Impervious surface affects urban climate, flood, and water pollution and has important role as basic data for urban planning and environmental and resources management uses. With a high paved rate, increased quantity of the outflown water and brings urban flooding during a heavy rain. Moreover, these non-point source pollution is getting increased the water pollution. In this regard, it is definitely important to research and keep monitoring the current situation of paved surface, which influences urban ecosystem, disaster and pollution. In this study, we suggest a method to utilize high resolution satellite image data for efficient survey on the current condition of paved surface. We analysed the paved surface condition of Dae-jeon metropolitan city area using KOMPSAT-2 image and validate its practicalness and limitation of this method.

Automatic Extraction of Land Cover information By Using KOMPSAT-2 Imagery (KOMPSAT-2 영상을 이용한 토지피복정보 자동 추출)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.277-280
    • /
    • 2010
  • There is a need to convert the old low- or medium-resolution satellite image-based thematic mapping to the high-resolution satellite image-based mapping of GSD 1m grade or lower. There is also a need to generate middle- or large-scale thematic maps of 1:5,000 or lower. In this study, the DEM and orthoimage is generated with the KOMPSAT-2 stereo image of Yuseong-gu, Daejeon Metropolitan City. By utilizing the orthoimage, automatic extraction experiments of land cover information are generated for buildings, roads and urban areas, raw land(agricultural land), mountains and forests, hydrosphere, grassland, and shadow. The experiment results show that it is possible to classify, in detail, for natural features such as the hydrosphere, mountains and forests, grassland, shadow, and raw land. While artificial features such as roads, buildings, and urban areas can be easily classified with automatic extraction, there are difficulties on detailed classifications along the boundaries. Further research should be performed on the automation methods using the conventional thematic maps and all sorts of geo-spatial information and mapping techniques in order to classify thematic information in detail.

  • PDF

Brightness Value Comparison Between KOMPSAT-2 Images with IKONOS/GEOEYE-1 Images (KOMPSAT-2 영상과 IKONOS/GEOEYE-1 영상의 밝기값 상호비교)

  • Kim, Hye-On;Kim, Tae-Jung;Lee, Hyuk
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.181-189
    • /
    • 2012
  • Recently, interest in potential for estimating water quality using high resolution satellite images is increasing. However, low SNR(Signal to Noise Ratio) over inland water and radiometric errors such as non-linearity of brightness value of high resolution satellite images often lead to accuracy degradation in water quality estimation. Therefore radiometric correction should be carried out to estimate water quality for high resolution satellite images. For KOMPSAT-2 images parameters for brightness value-radiance conversion are not available and precise radiometric correction is difficult. To exploit KOMPSAT-2 images for water quality monitoring, it is necessary to investigate non-linearity of brightness value and noise over inland water. In this paper, we performed brightness value comparison between KOMPSAT-2 images and IKONOS/GeoEye-1, which are known to show the linearity. We used the images obtained over the same area and on the same date for comparison. As a result, we showed that although KOMPSAT-2 images are more noisy;the trend of brightness value and pattern of noise are almost similar to reference images. The results showed that appropriate target area to minimize the impact of noise was $5{\times}5$. Non-linearity of brightness value between KOMPSAT-2 and reference images was not observed. Therefore we could conclude that KOMPSAT-2 may be used for estimation of water quality parameters such as concentration of chlorophyll.

Method for Restoring the Spatial Resolution of KOMPSAT-3A MIR Image (KOMPSAT-3A 중적외선 영상의 공간해상도 복원 기법)

  • Oh, Kwan-Young;Lee, Kwang-Jae;Jung, Hyung-Sup;Park, Sung-Hwan;Kim, Jeong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1391-1401
    • /
    • 2019
  • The KOMPSAT-3A is a high-resolution optical satellite launched in 2015 by Korea Aerospace Research Institute (KARI). KOMPSAT-3A provides Panchromatic (PAN-0.55 m), Multispectral (MS-2.2 m), and Mid-wavelength infrared (MIROR-5.5 m) image. However, due to security or military problems, MIROR image with 5.5m spatial resolution are provided down sampled at 33 m spatial resolution (MIRrd). In this study, we propose spatial sharpening method to improve the spatial resolution of MIRrd image (33 m) using virtual High Frequency (HF) image and optimal fusion factor. Using MS image and MIRrd image, we generated virtual high resolution (5.5 m) MIRORfus image and then compared them to actual high-resolution MIROR image. The test results show that the proposed method merges the spatial resolution of MS image and the spectral information of MIRrd image efficiently.

Monitoring of the Drought in the Upstream Area of Soyang River, Inje-Gun, Kangwon-do Using KOMPSAT-2/3 Satellite (KOMPSAT-2/3 위성을 활용한 강원도 인제군 소양강 상류지역의 가뭄 모니터링)

  • Park, Sung-Jae;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1319-1327
    • /
    • 2018
  • Korea has a terrain vulnerable to drought due to the concentration of precipitation in summer and the large amount of groundwater discharge. Quantified drought indices are used to determine these droughts. Among these, drought index is mainly used for analysis of precipitation, and recently, researches have been conducted to monitor drought using satellite images. In this study, we used the KOMPSAT-2/3 image to calculate the water surface area and compare with the drought index in order to monitor the drought in the Upper Soyang River. As a result, it was confirmed that the tendency of the water surface area change and the trend of the drought index were similar in the satellite images. Future research could be used as a basis for judging drought.

AQUACULTURE FACILITIES DETECTION FROM SAR AND OPTIC IMAGES

  • Yang, Chan-Su;Yeom, Gi-Ho;Cha, Young-Jin;Park, Dong-Uk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.320-323
    • /
    • 2008
  • This study attempts to establish a system extracting and monitoring cultural grounds of seaweeds (lavers, brown seaweeds and seaweed fulvescens) and abalone on the basis of both KOMPSAT-2 and Terrasar-X data. The study areas are located in the northwest and southwest coast of South Korea, famous for coastal cultural grounds. The northwest site is in a high tidal range area (on the average, 6.1 min Asan Bay) and has laver cultural grounds for the most. An semi-automatic detection system of laver facilities is described and assessed for spacebome optic images. On the other hand, the southwest cost is most famous for seaweeds. Aquaculture facilities, which cover extensive portions of this area, can be subdivided into three major groups: brown seaweeds, capsosiphon fulvescens and abalone farms. The study is based on interpretation of optic and SAR satellite data and a detailed image analysis procedure is described here. On May 25 and June 2, 2008 the TerraSAR-X radar satellite took some images of the area. SAR data are unique for mapping those farms. In case of abalone farms, the backscatters from surrounding dykes allows for recognition and separation of abalone ponds from all other water-covered surfaces. But identification of seaweeds such as laver, brown seaweeds and seaweed fulvescens depends on the dampening effect due to the presence of the facilities and is a complex task because objects that resemble seaweeds frequently occur, particularly in low wind or tidal conditions. Lastly, fusion of SAR and optic spatial images is tested to enhance the detection of aquaculture facilities by using the panchromatic image with spatial resolution 1 meter and the corresponding multi-spectral, with spatial resolution 4 meters and 4 spectrum bands, from KOMPSAT-2. The mapping accuracy achieved for farms will be estimated and discussed after field verification of preliminary results.

  • PDF

Extraction of Agricultural Land Use and Crop Growth Information using KOMPSAT-3 Resolution Satellite Image (KOMPSAT-3급 위성영상을 이용한 농업 토지이용 및 작물 생육정보 추출)

  • Lee, Mi-Seon;Kim, Seong-Joon;Shin, Hyoung-Sub;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.411-421
    • /
    • 2009
  • This study refers to develop a semi-automatic extraction of agricultural land use and vegetation information using high resolution satellite images. Data of IKONOS-2 satellite images (May 25 of 2001, December 25 of 2001, and October 23 of 2003), QuickBird-2 satellite images (May 1 of 2006 and November 17 of 2004) and KOMPSAT-2 satellite image (September 17 of 2007) which resemble with the spatial resolution and spectral characteristics of KOMPSAT-3 were used. The precise agricultural land use classification was tried using ISODATA unsupervised classification technique, and the result was compared with on-screen digitizing land use accompanying with field investigation. For the extraction of crop growth information, three crops of paddy, com and red pepper were selected, and the spectral characteristics were collected during each growing period using ground spectroradiometer. The vegetation indices viz. RVI, NDVI, ARVI, and SAVI for the crops were evaluated. The evaluation process was developed using the ERDAS IMAGINE Spatial Modeler Tool.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.