• Title/Summary/Keyword: Kompsat-1

Search Result 591, Processing Time 0.039 seconds

The Construction and Development of Support System for Satellite image Commercialization (위성영상 상용화 지원시스템 구축 및 개발)

  • Bae, Hee-Jin;Jeon, Gab-Ho;Jun, Jung-Nam;Kim, Min-A;Chae, Tae-Byeong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Utilization of KOMPSAT-2 satellite image is growing, because the resolution of KOMPSAT -2 is improved 43.5 times than that of KOMPSAT-1. To support for satellite image commercialization, KOCUST(KOMPSAT Customer & User Support Team) was composed, operation process was established and defined and support system for satellite image Commercialization was constructed. Also the support system constantly is improved for various user. In this paper, organization and function of support system developed so far these days for commercial user and operations related with it were described. In addition, direction of development was discussed

  • PDF

Application of KOMPSAT-5 SAR Interferometry by using SNAP Software (SNAP 소프트웨어를 이용한 KOMPSAT-5 SAR 간섭기법 구현)

  • Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1215-1221
    • /
    • 2017
  • SeNtinel's Application Platform (SNAP) is an open source software developed by the European Space Agency and consists of several toolboxes that process data from Sentinel satellite series, including SAR (Synthetic Aperture Radar) and optical satellites. Among them, S1TBX (Sentinel-1 ToolBoX)is mainly used to process Sentinel-1A/BSAR images and interferometric techniques. It provides flowchart processing method such as Graph Builder, and has convenient functions including automatic downloading of DEM (Digital Elevation Model) and image mosaicking. Therefore, if computer memory is sufficient, InSAR (Interferometric SAR) and DInSAR (Differential InSAR) perform smoothly and are widely used recently in the world through rapid upgrades. S1TBX also includes existing SAR data processing functions, and since version 5, the processing capability of KOMPSAT-5 has been added. This paper shows an example of processing the interference technique of KOMPSAT-5 SAR image using S1TBX of SNAP. In the open mine of Tavan Tolgoi in Mongolia, the difference between DEM obtained in KOMPSAT-5 in 2015 and SRTM 1sec DEM obtained in 2000 was analyzed. It was found that the maximum depth of 130 meters was excavated and the height of the accumulated ore is over 70 meters during 15 years. Tidal and topographic InSAR signals were observed in the glacier area near Jangbogo Antarctic Research Station, but SNAP was not able to treat it due to orbit error and DEM error. In addition, several DInSAR images were made in the Iraqi desert region, but many lines appearing in systematic errors were found on coherence images. Stacking for StaMPS application was not possible due to orbit error or program bug. It is expected that SNAP can resolve the problem owing to a surge in users and a very fast upgrade of the software.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

ELECTROMAGNETIC COMPATIBILITY DESIGN FOR KOMPSAT-2

  • Lee, Na-Young;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.383-392
    • /
    • 2003
  • It is quite essential that requirements allocation and analysis would be done for the electromagnetic compatibility (EMC) of all units when designing a satellite. Although KOMPSAT-2 inherits relatively large portions of the electrical designs from KOMPSAT-1, it has a new instrument and different combinations of sensors and actuators as well as their driving circuitry. Many requirements for the electromagnetic compatibility were modified and newly allocated for KOMPSAT-2. Naturally, they must be justified through analyses from the early stage of the program. In this paper, the EMC compatibility requirements for KOMPSAT2 are presented and verified for their suitability. In addition, some results, which were obtained from various analyses, are presented and discussed.

KOMPSAT EOC Grid Reference System

  • Kim, Youn-Soo;Kim, Yong-Seung;Benton, William
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.349-354
    • /
    • 1998
  • The grid reference system (GRS) has been useful for identifying the geographical location of satellite images. In this study we derive a GRS for the KOMPSAT Electro-Optical Camera (EOC) images. The derivation substantially follows the way that SPOT defines for its GRS, but incorporates the KOMPSAT orbital characteristics. The KOMPSAT EOC GRS (KEGRS) is designed to be a (K,J) coordinate system. The K coordinate parallel to the KOMPSAT ground track denotes the relative longitudinal position and the J coordinate represents the relative latitudinal position. The numbering of K begins with the prime meridian of K=1 with K increasing eastward, and the numbering of J uses a fixed value of J=500 at all center points on the equator with J increasing northward. The lateral and vertical intervals of grids are determined to be 12.5 km about at the 38$^{\circ}$ latitude to allow some margins for the value-added processing. The above design factors are being implemented in a satellite programming module of the KOMPSAT Receiving and Processing System (KRPS) to facilitate the EOC data collection planning over the Korean peninsula.

  • PDF

TELEMETRY TIMING ANALYSIS FOR IMAGE RECONSTRUCTION OF KOMPSAT SPACECRAFT

  • Lee, Jin-Ho;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The KOMPSAT(Korea Multi-Purpose SATellite) has two optical imaging instruments called EOC(Electro-Optical Camera) and OSMI (Ocean Scanning Multispectral Imager). The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transfeered from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time) which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  • PDF

SUN INTERFEREN PREDICTIONS FOR THE KOMPSAT TT&C STATION

  • Lee, Byoung-Sun;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.158-165
    • /
    • 1997
  • The Sun interference event predictions for the KOMPSAT TT&C station were performed to analyze the frequency of the event and the impact on the TT&C link. The KOMPSAT orbit was propagated including only J2 geopotential term for maintaining the Sun-synchronism and no other perturbations were included. Local time of ascending node of the KOMPSAT satellite was set to 10h50m00s. The TT&C station was assumed to locate in Taejon and have 9 meter antenna for S-band link. One year of simulation from 1999/07/01 were performed out of 3 year of mission lifetime of KOMPSAT satellite. Total four times of Sun interference events were occurred during 1 year of simulation and those lasted about 50 seconds altogether. The C/N degradation of the TT&C system was calculated about 4dB. The Sun interference event of 50 seconds of year are 0.0076 percents of the S-band contact time when the 30 minute of contact time is assumed in a day.

  • PDF

Modeling and Power Analysis of Solar Cell Array for Kompsat 1 (다목적실용위성 1호 태양전지 모델링 및 궤도특성 해석)

  • Jeong,Gyu-Beom;Lee,Sang-Uk;Choe,Wan-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • In this paper, solar cell array of KOMPSAT 1 was modeled and analyzed. The modeling results of solar array were achieved by neural algorithm, which is a powerful nonlinear system modeling tool. Using solar cell array modeling, the solar cell array was analyzed and verified by simulation considering solar cell data of KOMPSAT 1. The characteristics curves and power generation of the solar array are analyzed by using the modeling.

Orbit Determination System for the KOMPSAT-2 Using GPS Measurement Data

  • Lee, Byoung-Sun;Yoon, Jae-Cheol;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2325-2330
    • /
    • 2003
  • GPS based orbit determination system for the KOMPSAT-2 has been developed. Two types of orbit determination software such as operational orbit determination and precise orbit determination are designed and implemented. GPS navigation solutions from on-board the satellite are used for the operational orbit determination and raw measurements data such as C/A code pseudo-range and L1 carrier phase for the precise orbit determination. Operational concept, architectural design, software implementation, and performance test are described.

  • PDF

KOMPSAT-2 원격명령어와 텔레메트리 분석

  • 이진호;이나영;이상률;이주진
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.73-73
    • /
    • 2004
  • KOMPSAT-2 위성에서 사용되는 원격명령어와 텔레메트리는 국제표준규격인 CCSDS format을 따르고 있다. 이들 원격명령어와 텔레메트리는 KOMPSAT-1의 heritage에 따라 구성되었으나 테스트 단계를 거치는 동안 여러 가지 형식의 원격명령어와 텔레메트리가 추가되었으며 각 유닛의 프로세서와 탑재컴퓨터간의 충돌을 피하기 위해 그 구현 및 전달 방식도 보다 복잡해졌다. 본 논문에서는 KOMPSAT-2에서 사용되고 있는 원격명령어와 텔레메트리의 각 타입을 분석하고 유닛 별로 구현 및 전달 방식이 어떻게 달라지는 지 보여준다.

  • PDF