• 제목/요약/키워드: Kompsat

검색결과 1,081건 처리시간 0.021초

KOMPSAT 5호 InSAR영상을 이용한 DEM제작 정확도 평가 (Accuracy Evaluation of DEM Produced by using KOMPSAT-5 InSAR Image)

  • 한승희
    • 지적과 국토정보
    • /
    • 제47권2호
    • /
    • pp.39-47
    • /
    • 2017
  • KOMPSAT 5호의 SAR 탑재체는 X-밴드(9.66GHz) 마이크로파를 매개로 하는 센서가 탑재되어 있다. 특히, 방위각과 고도평면에 대해 전자 조향이 가능한 고정형 안테나를 가지고 있으므로 다양한 활용이 기대된다. 본 연구에서는 KOMPSAT 5호의 HR, UH모드영상을 이용하여 DEM을 제작함으로써 제작성능과 DEM의 정확도를 평가하였다. DEM제작성능평가를 위해 기선분석과 $2{\pi}$ ambiguity를 통해 DEM의 민감도를 판단한 결과 양호한 제작성능을 가지고 있음을 알 수 있었다. 또한 제작된 DEM의 정확도 평가를 위해 30점의 검사점에 대해 SRTM데이터와 비교하였으며 그 결과 표준편차 ${\pm}15{\sim}20m$의 정확도를 얻었다. 향후 필터링 방법이나 Phase unwrapping방법의 파라메타를 조정함에 의해 DEM의 정확도를 개선한다면 환경 및 재해모니터링 등에 KOMPSAT5호 영상을 폭넓게 활용할 수 있을 것으로 판단된다.

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

Kompsat-2 영상의 DEM 생성 및 상용 소프트웨어와의 성능평가 (DEM Generation from Kompsat-2 Images and Accuracy Comparison by Using Common Software)

  • 이수암;정재훈;김태정
    • 대한원격탐사학회지
    • /
    • 제25권4호
    • /
    • pp.359-366
    • /
    • 2009
  • 현재 Kompsat-2 영상을 이용한 정밀 DEM 제작에 관한 연구는 미비한 실정이다. 본 논문에서는 Kompsat-2 위성영상을 이용하여 정밀 DEM을 제작하고, 이렇게 제작된 DEM을 상용 소프트웨어인 PCI Geomatica, ENVI에서 제작된 DEM과의 비교를 통해 그 성능을 분석하였다. DEM의 제작을 위해 Kompsat-2에 가장 적합하다고 보고된 궤도-자세각 모델을 사용하였으며, 에피폴라 곡선의 기하학적 요소들을 이용한 정합방식을 사용하여 Kompsat-2 DEM의 제작을 시도하였다. 각 상용프로그램과의 성능의 비교는 육안을 통한 정성적 실험과, USGS DTED를 이용한 정량적 실험으로 이루어졌다. 정확도는 DTED와의 평균절대오차, RMS 오차로 판단하였으며, 비교 실험 결과, 대부분의 영상에서 실험에 사용한 방식이 다른 상용 프로그램에서 제작된 DEM보다 더 좋은 성능을 보여줌을 확인할 수 있었다.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

THE INTERFACE CONFIGURATION OF OVERSEA STATIONS AND OPERATION PLAN FOR KOMPSAT-2 LEOP

  • Baek Hyun-Chul;Kim Hae-Dong;Ahn Sang-Il;Kim Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.557-560
    • /
    • 2005
  • The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.

  • PDF

Covariance Analysis Study for KOMPSAT Attitude Determination System

  • Rhee, Seung-Wu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.70-80
    • /
    • 2000
  • The attitude knowledge error model is formulated for specifically KOMPSAT attitude determination system using the Lefferts/Markley/Shuster method, and the attitude determination(AD) error analysis is performed so as to investgate the on-board attitude determination capability of KOrea Multi-Purpose SATellite(KOMPSAT) using the covariance analysis method. Analysis results show there is almost no initial value effect on Attitude Determination (AD) error and the sensor noise effects on AD error are drastically decreased as is predicted because of the inherent characteristic of Kalman filter structure. However, it shows that the earth radiance effect of IR-sensor(earth sensor) and the bias effects of both IR-sensor and fine sun sensor are the dominant factors degrading AD error and gyro rate bias estimate error in AD system. Analysis results show that the attitude determination errors of roll, pitch and yaw axes are 0.056, 0.092 and 0.093 degrees, respectively. These numbers are smaller than the required values for the normal mission of KOMPSAT. Also, the selected on-orbit data of KOMPSAT is presented to demonstrate the designed AD system.

  • PDF

A Study on the Analysis of Geometric Accuracy of Tilting Angle Using KOMPSAT-l EOC Images

  • Seo, Doo-Chun;Lim, Hyo-Suk
    • Korean Journal of Geomatics
    • /
    • 제3권1호
    • /
    • pp.53-57
    • /
    • 2003
  • As the Korea Multi-Purpose Satellite-I (KOMPSAT-1) satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some KOMPSAT-1 EOC images taken at different tilt angles for this study. The required ground coordinates for bundle adjustment and geometric accuracy are obtained from the digital map produced by the National Geography Institution, at a scale of 1:5,000. Followings are the steps taken for the tilting angle of KOMPSAT-1 to be present in the evaluation of geometric accuracy of each different stereo image data: Firstly, as the tilting angle is different in each image, the characteristic of satellite dynamic must be determined by the sensor modeling. Then the best sensor modeling equation should be determined. The result of this research, the difference between the RMSE values of individual stereo images is mainly due to quality of image and ground coordinates instead of tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position, were sufficient.

  • PDF

KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

  • Baek, Myung-Jin;Chang, Young-Keun;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.199-208
    • /
    • 1999
  • In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  • PDF

Operation of the Radio Occultation Mission in KOMPSAT-5

  • Choi, Man-Soo;Lee, Woo-Kyoung;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.345-352
    • /
    • 2010
  • Korea multi-purpose satellite-5 (KOMPSAT-5) is a low earth orbit (LEO) satellite scheduled to be launched in 2010. To satisfy the precision orbit determination (POD) requirement for a high resolution synthetic aperture radar image of KOMPSAT-5, KOMPSAT-5 has atmosphere occultation POD (AOPOD) system which consists of a space-borne dual frequency global positioning system (GPS) receiver and a laser retro reflector array. A space-borne dual frequency GPS receiver on a LEO satellite provides position data for the POD and radio occultation data for scientific applications. This paper describes an overview of AOPOD system and operation concepts of the radio occultation mission in KOMPSAT-5. We showed AOPOD system satisfies the requirements of KOMPSAT-5 in performance and stability.

ELECTROMAGNETIC COMPATIBILITY DESIGN FOR KOMPSAT-2

  • Lee, Na-Young;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권4호
    • /
    • pp.383-392
    • /
    • 2003
  • It is quite essential that requirements allocation and analysis would be done for the electromagnetic compatibility (EMC) of all units when designing a satellite. Although KOMPSAT-2 inherits relatively large portions of the electrical designs from KOMPSAT-1, it has a new instrument and different combinations of sensors and actuators as well as their driving circuitry. Many requirements for the electromagnetic compatibility were modified and newly allocated for KOMPSAT-2. Naturally, they must be justified through analyses from the early stage of the program. In this paper, the EMC compatibility requirements for KOMPSAT2 are presented and verified for their suitability. In addition, some results, which were obtained from various analyses, are presented and discussed.