• Title/Summary/Keyword: Kojic acid derivatives

Search Result 15, Processing Time 0.018 seconds

Di-acetyl-nor-aporphines: Novel molecules and a novel mechanism to inhibit melanogenesis

  • Lintner, Karl;Peschard, Olivier;Leroux, Richard;Mondon, Philippe;Lamy, Francois
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.268-284
    • /
    • 2003
  • Nor-aporphine derivatives have been discovered which interfere with the flux of Calcium into and out of the cell interior. It has been shown that adrenergic antagonists that block the Calcium exchange lead to an inhibition of Protein kinase C activity, thus blocking tyrosinase activation. Di-acetyl-dimethoxy-methyl-nor-aporphine is a semi-synthetic molecule of natural origin with very high potency. On B16 melanocytes as well as in normal human melanocytes the decrease in melanin synthesis reaches -50% at a level of 40 ppm in the culture medium. On a molar concentration basis, this is 50 to 70 times stronger than Kojic acid inhibition. Yet, the cell viability is not affected. Reversibility studies show that after washing out of the active compound, melanogenesis returns to normal levels. Possible mechanisms of the activity are discussed. Tests carried out on SkinEthic(R) three-dimensional models of the epidermis and in vivo clinical studies on Asian population confirm the strong inhibition of melanogenesis. Safety evaluation of these molecules, on the other hand, demonstrates good skin tolerance and absence of toxicity.

  • PDF

Bioactive Cyclopentenone Derivatives from Marine Isolates of Fungi

  • Feng, Zhile;Leutou, Alain S.;Yang, Guohua;Nenkep, Viviane N.;Siwe, Xavier N.;Choi, Hong-Dae;Kang, Jung-Sook;Son, Byeng-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2345-2350
    • /
    • 2009
  • As part of an effort to discover bioactive natural products from marine sources, we investigated the bioactive secondary metabolites from two marine isolates of the fungi, Trichoderma viride and Rhizopus stolonifer. Three cyclopentenones, myrothenones A (1) and B (2) and trichodenone A (3), were isolated from T. viride and two cyclopentenones, 2-bromomyrothenone B (4) and botrytinone (5), were isolated from R. stolonifer. The molecular structures and absolute stereochemistries of the cyclopentenones were determined from chemical and physicochemical evidence, including quantum chemistry calculations, X-ray analysis, and the circular dichroism (CD) exciton chirality method. Myrothenone A (1) displays tyrosinase inhibitory activity, with an I$C_{50}$ value of 6.6 ${\mu}M$, and is therefore more active than the positive control, kojic acid.

Relationship Between Tyrosinase Inhibitory Action and Oxidation-Reduction Potential of Cosmetic Whitening Ingredients and Phenol Derivatives

  • Sakuma, Katsuya;Ogawa, Masayuki;Sugibayashi, Kenji;Yamada, Koh-ichi;Yamamoto, Katsumi
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.335-339
    • /
    • 1999
  • The oxidation-reduction potentials of cosmetic raw materials, showing tyrosinase inhibitory action, and phenolic compounds structurally similar to L-tyrosine were determined by cylcic voltammetry. The voltammograms obtained could be classified ito 4 patterns (patterns 1-4). Patterns 1, characterized by oxidation and reduction peaks as a pair, was observed with catechol, hydroquinone or phenol, and pattern 2 exhibiting another oxidation peak in addition to oxidation and reduction peaks as a pair was found with arbutin, kojic acid, resorcinol, methyl p-hydroxybenzoate and L-tyrosine as the substrate of tyrosinase. Pattern 3 with an independent oxidation peak only was expressed by L-ascorbic acid, and pattern 4 with a reduction peak only at high potentials, by hinokitiol. The tyrosinase inhibitory activity of these compounds was also evaluated using the 50% inhibitory concentration ($IC_{50}$) and the inhibition constant (Ki) as parameters. Hinokitiol, classified as patterns 4, showed the highest inhibitory activity (lowest $IC_{50}$ and Ki). Hydroquinone showing the second highest activity belonged to pattern 1, which also included compounds exhibiting pattern 2 was relatively low with Ki values being in the order of 10-4 M. Although there was no consistent relationship between oxidation-reduction potentials and tyrosinase inhibitory action, the voltammetry data can be used as an additional index to establish the relationship between the structure and the tyrosine inhibitory activity.

  • PDF

A Novel Synthesized Tyrosinase Inhibitor, (E)-3-(4-hydroxybenzylidene) chroman-4-one (MHY1294) Inhibits α-MSH-induced Melanogenesis in B16F10 Melanoma Cells (신규 합성물질 (E)-3-(4-하이드록시벤질리딘)크로마논 유도체의 티로시나아제 효소활성 저해 및 멜라닌 생성 억제 효과)

  • Jeon, Hyeyoung;Lee, Seulah;Yang, Seonguk;Bang, EunJin;Ryu, Il Young;Park, Yujin;Jung, Hee Jin;Chung, Hae Young;Moon, Hyung Ryong;Lee, Jaewon
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.719-728
    • /
    • 2021
  • Melanin pigments are abundantly distributed in mammalian skin, hair, eyes, and nervous system. Under normal physiological conditions, melanin protects the skin against various environmental stresses and acts as a physiological redox buffer to maintain homeostasis. However, abnormal melanin accumulation results in various hyperpigmentation conditions, such as chloasma, freckles, senile lentigo, and inflammatory pigmentation. Tyrosinase, a copper-containing enzyme, plays an important role in the regulation of the melanin pigment biosynthetic pathway. Although several whitening agents based on tyrosinase inhibition have been developed, their side effects, such as allergies, DNA damage, mutagenesis, and cytotoxicity of melanocytes, limit their applications. In this study, we synthesized 4-chromanone derivatives (MHY compounds) and investigated their ability to inhibit tyrosinase activity. Of these compounds, (E)-3-(4-hydroxybenzylidene)chroman-4-one (MHY1294) more potently inhibited the enzymatic activity of tyrosinase (IC50 = 5.1±0.86 μM) than kojic acid (14.3±1.43 μM), a representative tyrosinase inhibitor. In addition, MHY1294 showed competitive inhibitory action at the catalytic site of tyrosinase and had greater binding affinity at this site than kojic acid. Furthermore, MHY1294 effectively inhibited α-melanocyte stimulating hormone (α-MSH)-induced melanin synthesis and intracellular tyrosinase activity in B16F10 melanoma cells. The results of the present study indicate that MHY1294 may be considered as a candidate pharmacological agent and cosmetic whitening ingredient.

Tyrosinase Inhibitory Effect of (E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one Derivatives ((E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one 유도체들의 tyrosinase 활성억제 효과)

  • Lee, Eun Kyeong;Kim, Ju Hyun;Moon, Kyoung Mi;Ha, Sugyeong;Noh, Sang-Gyun;Kim, Dae Hyun;Lee, Bonggi;Kim, Do Hyun;Kim, Su Jeong;Ullah, Sultan;Moon, Hyung Ryong;Chung, Hae Young
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.139-148
    • /
    • 2017
  • The inhibition of tyrosinase, a key enzyme in mammalian melanin synthesis, plays an important role in preventing skin pigmentation and melanoma. Therefore, tyrosinase inhibitors are very important in the fields of medicine and cosmetics. However, only a few tyrosinase inhibitors are currently available because of their toxic effects on skin or lack of selectivity and stability. Therefore, we synthesized a novel series of (E)-2-(substituted benzylidene)-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one derivatives and evaluated their inhibitory effects on mushroom tyrosinase, with the aim of discovering a novel tyrosinase inhibitor. Among 19 derivatives, MHY3655 ($IC_{50}=0.1456{\mu}M$) showed the strongest inhibitory effect on tyrosinase activity compared to kojic acid ($IC_{50}=17.2{\mu}M$), a well-known tyrosinase inhibitor. In addition, MHY3655 showed competitive inhibition on Lineweaver-Burk plots. We confirmed that MHY3655 strongly interacts with mushroom tyrosinase residues through the docking simulation. Substitutions with a hydroxy group at both R2 and R4 in the phenyl ring indicated that these groups play a major role in the high binding affinity to tyrosinase. Further, MHY3655 did not show cytotoxicity at the concentrations tested in B16F10 melanoma cells. In conclusion, the novel compound MHY3655 potentially shows tyrosinase inhibitory activity, and it could be used as an ingredient in whitening cosmetics.