• Title/Summary/Keyword: Kohonen Self-Organizing Map (SOM)

Search Result 19, Processing Time 0.02 seconds

A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm (SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구)

  • Kim Jeong-Tae;Lee Ho-Keun;Lim Yoon Seok;Kim Ji-Hong;Koo Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.

A Comparative Study on Statistical Clustering Methods and Kohonen Self-Organizing Maps for Highway Characteristic Classification of National Highway (일반국도 도로특성분류를 위한 통계적 군집분석과 Kohonen Self-Organizing Maps의 비교연구)

  • Cho, Jun Han;Kim, Seong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.347-356
    • /
    • 2009
  • This paper is described clustering analysis of traffic characteristics-based highway classification in order to deviate from methodologies of existing highway functional classification. This research focuses on comparing the clustering techniques performance based on the total within-group errors and deriving the optimal number of cluster. This research analyzed statistical clustering method (Hierarchical Ward's minimum-variance method, Nonhierarchical K-means method) and Kohonen self-organizing maps clustering method for highway characteristic classification. The outcomes of cluster techniques compared for the number of samples and traffic characteristics from subsets derived by the optimal number of cluster. As a comprehensive result, the k-means method is superior result to other methods less than 12. For a cluster of more than 20, Kohonen self-organizing maps is the best result in the cluster method. The main contribution of this research is expected to use important the basic road attribution information that produced the highway characteristic classification.

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

Web Image Clustering with Text Features and Measuring its Efficiency

  • Cho, Soo-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • This article is an approach to improving the clustering of Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering algorithm, a self-organizing map (SOM) proposed by Kohonen is used. To evaluate the clustering efficiencies of SOMs, we propose a simple but effective measure indicating the accumulativeness of same class images and the perplexities of class distributions. Our approach is to advance the existing measures through defining and using new measures accumulativeness on the most superior clustering node and concentricity to evaluate clustering efficiencies of SOMs. The experimental results show that the high-level text features are more useful in SOM-based Web image clustering.

  • PDF

Peach & Pit Volume Measurement and 3D Visualization using Magnetic Resonance Imaging Data (자기공명영상을 이용한 복숭아 및 씨의 부피 측정과 3차원 가시화)

  • 김철수
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-234
    • /
    • 2002
  • This study was conducted to nondestructively estimate the volumetric information of peach and pit and to visualize the 3D information of internal structure from magnetic resonance imaging(MRI) data. Bruker Biospec 7T spectrometer operating at a proton reosonant frequency of 300 MHz was used for acquisition of MRI data of peach. Image processing algorithms and visualization techniques were implemented by using MATLAB (Mathworks) and Visualization Toolkit(Kitware), respectively. Thresholding algorithm and Kohonen's self organizing map(SOM) were applied to MRI data fur region segmentation. Volumetric information were estimated from segemented images and compared to the actual measurements. The average prediction errors of peach and pit volumes were 4.5%, 26.1%, respectively for the thresholding algorithm. and were 2.1%, 19.9%. respectively for the SOM. Although we couldn't get the statistically meaningful results with the limited number of samples, the average prediction errors were lower when the region segmentation was done by SOM rather than thresholding. The 3D visualization techniques such as isosurface construction and volume rendering were successfully implemented, by which we could nondestructively obtain the useful information of internal structures of peach.

A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting (하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측)

  • Jeong, Sang-Yun;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF

Development of Sasang Type Diagnostic Test with Neural Network (신경망을 사용한 사상체질 진단검사 개발 연구)

  • Chae, Han;Hwang, Sang-Moon;Eom, Il-Kyu;Kim, Byoung-Chul;Kim, Young-In;Kim, Byung-Joo;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.765-771
    • /
    • 2009
  • The medical informatics for clustering Sasang types with collected clinical data is important for the personalized medicine, but it has not been thoroughly studied yet. The purpose of this study was to examine the usefulness of neural network data mining algorithm for traditional Korean medicine. We used Kohonen neural network, the Self-Organizing Map (SOM), for the analysis of biomedical information following data pre-processing and calculated the validity index as percentage correctly predicted and type-specific sensitivity. We can extract 12 data fields from 30 after data pre-processing with correlation analysis and latent functional relationship analysis. The profile of Myers-Briggs Type Inidcator and Bio-Impedance Analysis data which are clustered with SOM was similar to that of original measurements. The percentage correctly predicted was 56%, and sensitivity for So-Yang, Tae-Eum and So-Eum type were 56%, 48%, and 61%, respectively. This study showed that the neural network algorithm for clustering Sasang types based on clinical data is useful for the sasang type diagnostic test itself. We discussed the importance of data pre-processing and clustering algorithm for the validity of medical devices in traditional Korean medicine.

Speech Visualization of Korean Vowels Based on the Distances Among Acoustic Features (음성특징의 거리 개념에 기반한 한국어 모음 음성의 시각화)

  • Pok, Gouchol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.512-520
    • /
    • 2019
  • It is quite useful to represent speeches visually for learners who study foreign languages as well as the hearing impaired who cannot directly hear speeches, and a number of researches have been presented in the literature. They remain, however, at the level of representing the characteristics of speeches using colors or showing the changing shape of lips and mouth using the animation-based representation. As a result of such approaches, those methods cannot tell the users how far their pronunciations are away from the standard ones, and moreover they make it technically difficult to develop such a system in which users can correct their pronunciation in an interactive manner. In order to address these kind of drawbacks, this paper proposes a speech visualization model based on the relative distance between the user's speech and the standard one, furthermore suggests actual implementation directions by applying the proposed model to the visualization of Korean vowels. The method extract three formants F1, F2, and F3 from speech signals and feed them into the Kohonen's SOM to map the results into 2-D screen and represent each speech as a pint on the screen. We have presented a real system implemented using the open source formant analysis software on the speech of a Korean instructor and several foreign students studying Korean language, in which the user interface was built using the Javascript for the screen display.