• Title/Summary/Keyword: KoSol-5 absorbent

Search Result 2, Processing Time 0.017 seconds

0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5) (신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험)

  • Lee, Junghyun;Kim, Beom-Ju;Shin, Su Hyun;kwak, No-Sang;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2016
  • The absorption efficiency of amine $CO_2$ absorbent (KoSol-5) developed by KEPCO research institute was evaluated using a 0.1 MW test bed. The performance of post-combustion technology to capture two tons of $CO_2$ per day from a slipstream of the flue gas from a 500 MW coal-fired power station was first confirmed in Korea. Also the analysis of the absorbent regeneration energy was conducted to suggest the reliable data for the KoSol-5 absorbent performance. And we tested energy reduction effects by improving the absorption tower inter-cooling system. Overall results showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate : 90%) suggested by IEA-GHG. Also the regeneration energy of the KoSol-5 showed about $3.05GJ/tonCO_2$ which was about 25% reduction in the regeneration energy compared to that of using the commercial absorbent MEA (Monoethanolamine). Based on current experiments, the KoSol-5 absorbent showed high efficiency for $CO_2$ capture. It is expected that the application of KoSol-5 to commercial scale $CO_2$ capture plants could dramatically reduce $CO_2$ capture costs.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.