챗봇과 같은 대화형 에이전트 사용이 증가하면서 채팅에서의 혐오 표현 사용도 더불어 증가하고 있다. 혐오 표현을 자동으로 탐지하려는 노력은 다양하게 시도되어 왔으나, 챗봇 데이터를 대상으로 한 혐오 표현 탐지 연구는 여전히 부족한 실정이다. 이 연구는 혐오 표현을 포함한 챗봇-사용자 대화 데이터 35만 개에 한국어 말뭉치로 학습된 KoELETRA 기반 혐오 탐지 모델을 적용하여, 챗봇-사람 데이터셋에서의 혐오 표현 탐지의 성능과 한계점을 검토하였다. KoELECTRA 혐오 표현 분류 모델은 챗봇 데이터셋에 대해 가중 평균 F1-score 0.66의 성능을 보였으며, 오탈자에 대한 취약성, 맥락 미반영으로 인한 편향 강화, 가용한 데이터의 정확도 문제가 주요한 한계로 포착되었다. 이 연구에서는 실험 결과에 기반해 성능 향상을 위한 방향성을 제시한다.
좋은 자연어 이해 시스템은 인간과 같이 텍스트에서 단순히 단어나 문장의 형태를 인식하는 것 뿐만 아니라 실제로 그 글이 의미하는 바를 정확하게 추론할 수 있어야 한다. 이 논문에서 우리는 뉴스 헤드라인으로 뉴스의 토픽을 분류하는 open benchmark인 KLUE(Korean Language Understanding Evaluation)에 대하여 기존에 비교 실험이 진행되지 않은 시중에 공개된 다양한 한국어 라지스케일 모델들의 성능을 비교하고 결과에 대한 원인을 실증적으로 분석하려고 한다. KoBERT, KoBART, KoELECTRA, 그리고 KcELECTRA 총 네가지 베이스라인 모델들을 주어진 뉴스 헤드라인을 일곱가지 클래스로 분류하는 KLUE-TC benchmark에 대해 실험한 결과 KoBERT가 86.7 accuracy로 가장 좋은 성능을 보여주었다.
현대사회의 기업들은 소셜 미디어, 제품 리뷰, 고객 피드백 등 다양한 영역에 걸쳐 소비자 의견을 정확하게 이해하는 것이 경쟁에서 성공하기 위한 주요 과제임을 강조하며 감성 분류를 점점 더 중요한 작업으로 채택하고 있다. 감성 분류는 소비자의 다양한 의견과 감성을 파악하여 제품이나 서비스 개선에 도움을 주는 이유로 많은 연구가 진행중이다. 감성 분류에서는 대규모 데이터 셋과 사전 학습된 언어 모델을 통한 미세 조정이 성능 향상에 중요한 역할을 한다. 최근 인공지능 기술의 발전으로 감성 분류 모델은 높은 성능을 보이고 있으며, 특히 ELECTRA 모델은 효율적인 학습 방법과 적은 컴퓨팅 자원을 통해 뛰어난 결과를 제공한다. 따라서 본 논문에서는 ELECTRA에서 한국어를 학습한 KoELECTRA 모델을 이용하여 다양한 데이터 셋에 대한 효율적인 미세 조정을 통해 감성 분류 성능을 향상하는 방법을 제안한다.
관계추출(Relation Extraction)이란 주어진 문장에서 엔터티간의 관계를 예측하는 것을 목표로 하는 태스크이다. 이를 위해 문장 구조에 대한 이해와 더불어 두 엔터티간의 관계성 파악이 핵심이다. 기존의 관계추출 연구는 영어 데이터를 기반으로 발전되어 왔으며 그에 반해 한국어 관계 추출에 대한 연구는 부족하다. 이에 본 논문은 한국어 문장내의 엔터티 정보에 대한 위치 정보를 활용하여 관계를 예측할 수 있는 방법론을 제안하였으며 이를 다양한 한국어 사전학습 모델(KoBERT, HanBERT, KorBERT, KoELECTRA, KcELECTRA)과 mBERT를 적용하여 전반적인 성능 비교 및 분석 연구를 진행하였다. 실험 결과 본 논문에서 제안한 엔터티 위치 토큰을 사용하였을때의 모델이 기존 연구들에 비해 좋은 성능을 보였다.
본 연구는 딥러닝 기법을 활용하여 범죄 수사 도메인에 특화된 개체명 인식 모델을 개발하는 연구이다. 본 연구를 통해 비정형의 형사 판결문·수사 문서와 같은 텍스트 기반의 데이터에서 자동으로 범죄 수법과 범죄 관련 정보를 추출하고 유형화하여, 향후 데이터 분석기법을 활용한 범죄 예방 분석과 수사에 기여할 수 있는 시스템을 제안한다. 본 연구에서는 범죄 수사 도메인 텍스트를 수집하고 범죄 분석의 관점에서 필요한 개체명 분류를 새로 정의하였다. 또한 최근 자연어 처리에서 높은 성능을 보이고 있는 사전학습 언어모델인 KoELECTRA를 적용한 제안 모델은 본 연구에서 정의한 범죄 도메인 개체명 실험 데이터의 9종의 메인 카테고리 분류에서 micro average(이하 micro avg) F1-score 99%, macro average(이하 macro avg) F1-score 96%의 성능을 보이고, 56종의 서브 카테고리 분류에서 micro avg F1-score 98%, macro avg F1-score 62%의 성능을 보인다. 제안한 모델을 통해 향후 개선 가능성과 활용 가능성의 관점에서 분석한다.
대화형 에이전트가 일관성 없는 답변, 재미 없는 답변을 하는 문제를 해결하기 위하여 최근 페르소나 기반의 대화 분야의 연구가 활발히 진행되고 있다. 그러나 한국어로 구축된 페르소나 대화 데이터는 아직 구축되지 않은 상황이다. 이에 본 연구에서는 영어 원본 데이터에서 한국어로 번역된 데이터를 활용하여 최초의 페르소나 기반 한국어 대화 모델을 제안한다. 전처리를 통하여 번역 품질을 향상시킨 데이터에 사전 학습 된 한국어 모델인 KoBERT와 KoELECTRA를 미세조정(fine-tuning) 시킴으로써 모델에게 주어진 페르소나와 대화 맥락을 고려하여 올바른 답변을 선택하는 모델을 학습한다. 실험 결과 KoELECTRA-base 모델이 가장 높은 성능을 보이는 것을 확인하였으며, 단순하게 사용자의 발화만을 주는 것 보다 이전 대화 이력이 추가적으로 주어졌을 때 더 좋은 성능을 보이는 것을 확인할 수 있었다.
감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.
뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.
Numerous studies have been conducted to analyze the causal relationships of maritime accidents using natural language processing techniques. However, when multiple causes and effects are associated with a single accident, the effectiveness of extracting these causal relations diminishes. To address this challenge, we compiled a dataset using verdicts from maritime accident cases in this study, analyzed their causal relations, and applied labeling considering the association information of various causes and effects. In addition, to validate the efficacy of our proposed methodology, we fine-tuned the KoELECTRA Korean language model. The results of our validation process demonstrated the ability of our approach to successfully extract multiple causal relationships from maritime accident cases.
선거기간이 되면 많은 여론조사 기관에서 후보자별 지지율을 조사하여 배포한다. 과거에는 여론조사 기관에 의존하여 지지율을 조사할 수밖에 없었지만, 현대 사회에서는 인터넷이나 모바일 SNS나 커뮤니티를 통해 국민 여론이 표출된다. 따라서 인터넷상에 표출된 국민 여론을 자연어 분석을 통해서 파악하면 여론조사 결과만큼 정확한 후보자 지지율을 파악할 수 있다. 따라서 본 논문은 인터넷 커뮤니티 게시글 데이터를 통해 유저들의 정치 관련 언급을 종합하여 선거기간 후보자의 지지율을 추론하는 방법을 제시한다. 게시글에서 지지율을 분석하기 위해 KoBert, KcBert, KoELECTRA모델을 활용하여 실제 여론조사와 가장 상관관계가 높은 모델 생성 방법을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.