• Title/Summary/Keyword: Knee kinetics

Search Result 53, Processing Time 0.018 seconds

The Influence of High-heeled Shoes on Kinematics and Kinetics of the Knee Joint during Sit-to-stand task

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.304-310
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the change in the kinematics and kinetics of the knee joint depending on high-heeled shoes during sit-to-stand (SitTS) task. Methods: Nineteen healthy females participated in this study. The subjects performed the SitTS task wearing high-heeled shoes and barefoot. The experiment was repeated three times for each task with foot conditions. The kinematics and kinetics of the knee joint were measured and analyzed using a 3D motion analysis system. Results: The result of this study showed kinematic and kinetics differences in knee joints during the SitTS task based on high-heeled shoes. Significant differences in knee flexion angle were observed during SitTS. The knee extensor force showed statistically significant differences during SitTS tasks. At the initial of SitTS, the knee flexor and extensor moment showed significant differences. The knee extensor moment showed statistically significant differences at the terminal of SitTS. At the maximum of SitTS, the knee extensor moment showed statistically significant differences. Conclusion: Therefore, wearing high-heeled shoes during SitTS movements in daily life is considered to influence knee joint kinematics and kinetics due to the HH, suggesting the possibility of increased risk of patellofemoral pain, and knee osteoarthritis caused by changes in loading of the knee joint.

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.

Biomechanical Comprehension of Knee Joint (무릎 관절의 생역학적 이해)

  • Kwon Young-Shil;Lee Jin-Hee;Jung Byong-Ok;Bae Sung-Soo;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.167-177
    • /
    • 1999
  • Biomechanics is an important scientific foundation of physical therapy and is used to relate kinematics, kinetics, statics and dynamics for comprehencing human movement. The knee is well studied for demonstrating biomechanical analyses of joint because of its simplicity. The purposes of this study were 1)to provide categories and concepts of biomechanics, 2) to apply these concepts to knee movement involving daily living and gait, and 3) to review current and preceeding researches about biomechanics of knee. Thus, physical therapiestes in clinic may be helped understand of movement which includes considerations of description and production related force, moment and power.

  • PDF

The Influence of Unstable Shoes on Kinematics and Kinetics of the Lower limb Joints during Sit-to-stand task

  • Kim, Yun-Jin;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate examine how the kinematics and kinetics of lower limb joints were changed depending on the unstable shoes (US) during sit-to-stand task (SitTS). Methods: Nineteen healthy females were participated in this study. The subjects performed sit-to-stand task with US and barefoot. The experiment was repeated three times for each tasks with conditions. The kinematics and kinetics of lower limb joint were measured and analyzed using a 3-D motion analysis system. A paired t-test was utilised performed for to identificationy of changes in mean of angle, force, and moment between both the two conditions. Results: The results of this study showed kinematic differences in lower limb joints during SitTS based on the US. The hip, knee, and ankle angle showed statistically significant differences during SitTS. At the initial of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the terminal of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the maximum of SitTS, Tthe moment of the hip extensor showed statistically significant differences. The force and moment of the ankle flexor, extensor moment showed statistically significant differences. Conclusion: Therefore, Wwearing US is considered to influence on the lower limb joints kinematics and kinetics during SitTS movements, and thus suggests the possibility that of reducing the risks of pain, and osteoarthritis caused by changes in the loading of lower limb joints.

A Study on Changes in Knee Joint Loading during Stair Gait with Unstable Shoes (계단 보행 시 불안정성 신발 착용에 따른 슬관절 부하에 대한 연구)

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: The purpose of this study is to compare kinematics and kinetics on the knee joint between stair gait with unstable shoes and barefoot in healthy adult women. Methods: Seventeen healthy adult women were recruited for this study. The subjects performed stair ascent and descent with unstable shoes and barefoot. The experiment was repeated three times for each stair gait with unstable shoes and barefoot. Measurement and analysis of the movements of the knee joint were performed using a three-dimensional analysis system. Results: Statistically significant differences in the knee muscle force of semimembranosus, biceps femoris-long head, biceps femoris-short head and sartorius, patellar ligament, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Statistically significant differences in the knee muscle force of sartorius, rectus femoris, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair descent. Statistically significant differences in the knee flexor moment of semitendinosus, biceps femoris-long head, biceps femoris-short head, sartorius, rectus femoris, vastus intermedialis, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Conclusion: Therefore, wearing unstable shoes during stair gait in daily life is considered to influence knee joint kinematics and kinetics due to the unstable shoes, and thus suggest the possibility that reducing the risks of pain, and knee osteoarthritis, stabilizing the knee joint caused by changes in the loading of the knee joint.

The Effect of Foot Landing Type on Lower-extremity Kinematics, Kinetics, and Energy Absorption during Single-leg Landing

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • Objective: The aim of this study was to examine the effect of foot landing type (forefoot vs. rearfoot landing) on kinematics, kinetics, and energy absorption of hip, knee, and ankle joints. Method: Twenty-five healthy men performed single-leg landings with two different foot landing types: forefoot and rearfoot landing. A motion-capture system equipped with eight infrared cameras and a synchronized force plate embedded in the floor was used. Three-dimensional kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of .05. Results: On initial contact, a greater knee flexion angle was shown during rearfoot landing (p < .001), but the lower knee flexion angle was found at peak vertical ground reaction force (GRF) (p < .001). On initial contact, ankles showed plantarflexion, inversion, and external rotation during forefoot landing, while dorsiflexion, eversion, and internal rotation were shown during rearfoot landing (p < .001, all). At peak vertical GRF, the knee extension moment and ankle plantarflexion moment were lower in rearfoot landing than in forefoot landing (p = .003 and p < .001, respectively). From initial contact to peak vertical GRF, the negative work of the hip, knee, and ankle joint was significantly reduced during rearfoot landing (p < .001, all). The contribution to the total work of the ankle joint was the greatest during forefoot landing, whereas the contribution to the total work of the hip joint was the greatest during rearfoot landing. Conclusion: These results suggest that the energy absorption strategy was changed during rearfoot landing compared with forefoot landing according to lower-extremity joint kinematics and kinetics.

Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump (관절 역학과 협응이 최대 수직 점프의 개인내 수행차에 미치는 영향)

  • Kim, Yong-Woon;Seo, Jung-Suk;Han, Dong-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.305-314
    • /
    • 2012
  • The purpose of this study was to investigate the effects of joint kinetics and coordination on within-individual differences in maximum vertical jump. 10 male subjects aged 20 to 30 performed six trials in maximum vertical jump and with based on jump height the good(GP) and bad(BP) performances for each subject were compared on joint kinetics of lower extremity and coordination parameters such as joint reverse and relative phase. The results showed that maximum moment, power, and work done of hip joint and maximum moment of ankle joint in GP were significantly higher than that in the BP but no significant differences for the knee joint. We could observe a significant difference in joint reverse timing between both conditions. And also the relative phase on ankle-knee and ankle-hip in GP were significantly lower than that in the BP, which means that in GP joint movements were more in-phase synchronized mode. In conclusion, mechanical outputs of hip and ankle joints had an effect on within-individual differences in vertical jump and the inter-joint coordination and coordination including sequence and timing of joint motion also might be high influential factors on the performances within individual.

Change in Kinetics and Kinematics during 1-Footed Drop Landing with an Increase in Upper Body Weight

  • Lee, Jin-Taek;David, O'Sullivan
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The purpose of this study was to investigate changes in kinetic and kinematic variables associated with an increase in upper body weight. Eighteen healthy male university students($175.96{\pm}4.19\;cm$, $70.79{\pm}8.26\;kg$) participated. Eight motion analysis cameras(Qualysis Oqus 500) and 2 force AMTI platforms(Advanced Mechanical Technologies Inc. OR6-7, US) were used to record motion and forces during the drop landing at a frequency of 120 Hz and 1200 Hz, respectively. QTM software(Qualisys Track Manager) was used to record the data, and the variables were analyzed with Visual 3D and Matlab 2009. For the drop landing, a box of $4{\times}2{\times}0.46\;m$ was constructed from wood. Knee and ankle maximum flexion angle, knee flexion angle, knee and ankle angle at landing, time for maximum ankle flexion after landing, and time for maximum knee flexion after landing were calculated. There was a significant change in the time for maximum and minimum ground force reaction and the time for maximum dorsal flexion after landing(p<.05) with increasing weight. There was no significant change for the hip, knee, and ankle ROM, whereas there was an increase in the angle ROM as the weight increased, in the order of ankle, knee, and hip ROM. This result shows that the ankle joint ROM increased with increasing weight for shock attenuation during the drop landing. There was a trend for greater ankle ROM than knee ROM, but there was no clear change in the ROM of the hip joint with increasing weight. In conclusion, this study shows the importance of ankle joint flexibility and strength for safe drop landing.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.