• 제목/요약/키워드: Knee flexion angle

검색결과 206건 처리시간 0.025초

휠체어에서 엉덩이 들기 동작 동안 발위치가 척수손상환자의 어깨 근활성도, 최대 족저압, 무릎굽힘 각도, 운동자각도에 미치는 효과 비교 (Comparison of the Effects of Different Foot Positions During Body-lifting in Wheelchair on Shoulder Muscle Activities, Peak Plantar Pressure, Knee Flexion Angle, and Rating Perceived Exertion in Individuals With Spinal Cord Injury)

  • 이왕재;임원빈;윤병구;이범석;이충휘
    • 한국전문물리치료학회지
    • /
    • 제24권2호
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Individuals with spinal cord injury (SCI) rely on their upper limbs for body-lifting activity (BLA). While studies have examined the electromyography (EMG) and kinematics of the shoulder joints during BLA, no studies have considered foot position during BLA. Objects: This study compared the effects of different foot positions during BLA on the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion in individuals with SCI. Methods: The study enrolled 13 mens with motor-complete paraplegic SCI, ASIA (American Spinal Injury Association) A or B. All subjects performed BLA with the feet positioned on the wheelchair footrest and on the floor independently. Surface EMG was used to collect data from the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii. The peak plantar pressure was measured using pedar-X and the knee flexion angle with Image J. Borg's rating perceived exertion scale was used to measure the physical activity intensity level. The paired t-test was used to compare the shoulder muscle activities, peak plantar pressure, knee flexion angle, and rating perceived exertion between the two feet positions during BLA. Results: The activity of the latissimus dorsi, pectoralis major, serratus anterior, and triceps brachii and rating perceived exertion decreased significantly and the peak plantar pressure and knee flexion angle increased significantly when performing BLA with the feet positioned on the wheelchair footrest compared with on the floor (p<.05). Conclusion: These findings suggest that individuals with SCI may perform BLA with the feet positioned on the wheelchair footrest for weight-relief lifting to decrease the shoulder muscle activities and the rating perceived exertion and to increase the peak plantar pressure and the knee flexion angle.

태권에어로빅스 옆차기동작의 운동학적 분석 (Kinematical Analysis of Side Kick Motion in Taekwon Aerobics)

  • 유실
    • 한국운동역학회지
    • /
    • 제18권3호
    • /
    • pp.33-42
    • /
    • 2008
  • 이 연구는 생횔체육 프로그램으로서의 태권에어로빅스 옆차기 동작의 운동학적 분석으로 대상자는 숙련자와 비숙련자 각 7명으로 하였다. 자료는 Qualisys사의 Proreflex MCU-240 카메라 7대를 샘플링 율(sampling rate), 100frames/sec로 촬영한 후 Qualisys System(SWEDEN)의 QTM(Motion Capture Software)으로 위치 좌표를 얻었으며 Visual3D를 사용하여 연구변인을 산출하였고, 두 집단간의 평균치 차이 검정은 SPSS 12.0K의 독립 t-test를 유의수준 p<.05로 실시하였다. 그 결과는 다음과 같다. 1. 구간별 소요시간은 전 구간에서 통계적으로 유의한 차이가 없었다. 2. 무릎 각도의 경우 제2 무릎최대굴곡순간(p=0.046, F=4.925)에서 통계적으로 유의한 차이가 있었다. 3. 무릎 각속도의 경우 제1 무릎최대굴곡순간(p=0.031, F=5.940)에서 통계적으로 유의한 차이가 있었다. 4. 힙의 굴곡/신전 각도는 제2 무릎최대굴곡순간(p=0.012, F=8.668)에서 통계적으로 유의한 차이가 있었다. 5. 힙의 외/내전 각속도는 무릎최소굴곡순간(p=0.019, F=7.324)에서 통계적으로 유의한 차이가 있었다. 6. 힙의 외/내측 회전각속도는 무릎최소굴곡순간(p=0.005, F=11.87)에서 통계적으로 유의한 차이가 있었다.

하지 분절 각도에 따른 수의 등척성 수축(MVIC)시 근전도 비교 (Comparison of the maximum EMG levels recorded in maximum effort isometric contractions at five different knee flexion angles)

  • 김정자;이민형;김연정;채원식;한윤수;권선옥
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.197-206
    • /
    • 2005
  • The purpose of this study was to quantify the maximum EMG levels and determine if there are differences in these EMG levels with respect to different knee flexion angles. Eight university students with no known musculoskeletal disorders were recruited as the participants. The maximum voluntary isometric knee extensions and flexions were taken from each participant sat on the isokinetic exercise machine (Cybex 340) at five different knee flexion angles ($10^{\circ}$, $30^{\circ}$, $50^{\circ}$, $70^{\circ}$, $90^{\circ}$) After surface electrodes were attached to rectus femoris, vastus medialis, vastus laterlis, biceps femoris, and semitendinosus, maximum EMG levels at five different knee flexion angles were measured. The results showed that there was no significant difference in maximum EMG levels among five different knee flexion angles. Although there was no significant difference in EMG levels and were some variations among different knee flexion angles, the EMG signals of quadriceps in extension and biceps femoris in flexion were the greatest at $30^{\circ}$. It seems that different joint angles or relative locations of body segments might affect the magnitude of EMG levels. Because the maximum EMG levels could change with a different knee flexion angle, an attempt should be made to more accurately measure these values. If then, %MVIC measure provides more reliable data and is most appropriate for EMG normalization.

하이힐 보행이 비만여성의 슬관절에 미치는 영향 (Influence of Walking With High-Heeled Shoes on the Knee Joint of Obese Women)

  • 장윤희;이완희
    • 한국전문물리치료학회지
    • /
    • 제14권3호
    • /
    • pp.23-31
    • /
    • 2007
  • The purpose of this study was to determine the influence of high-heeled shoes on walking of obese women as it was already proven an extrinsic factor of knee osteoarthritis in women with normal weight. In this study the aimed therefore in particular was to utilize high-heeled shoes in proving it's causal influence on knee osteoarthritis by measuring the angle and torque of the knee joint. Fifteen obese women (BMI>25 $kg/m^2$) were measured in their twenties. Each angle and torque of their knee joints during walking on 6.5 cm high-heeled shoes and with a bare feet, were compared with each other and analyzed with a 3D motion analysis system. There was no significant difference in walking speed, cadence and stride length between the two conditions. However, there was a significant increase in a double limb support time and the stance phase when walking on high-heeled shoes as when walking with bare feet. The peak knee flexion angle and peak knee varus torque was higher when walking on high-heeled shoes than with bare feet. On the contrary, the peak knee flexion angle in the swing phase was not statistically different. The prolongation of peak knee varus torque was also proven. There was a significant increase in peak knee varus torque in the initial and last stance phases during walking on high-heeled shoes as compared to walking on bare feet. Through the above results, it was proven that when obese women walked on high-heeled shoes, rather than with bare feet, peak knee flexor and varus torque increased along with the changes of the in knee joint angle. Therefore, the influence of high-heeled shoes might be a significant intrinsic factor in knee osteoarthritis of obese women.

  • PDF

노인의 직립자세역학과 체력과의 관계 (The Relationship between Standing Posture Biomechanics and Physical Fitness in the Elderly)

  • 이경옥;최규정;김소영
    • 한국운동역학회지
    • /
    • 제24권3호
    • /
    • pp.259-267
    • /
    • 2014
  • The purpose of this study was to find the relationship between standing posture biomechanics and physical fitness in the elderly. Physical fitness variables and postural variables for 227 (140 women and 87 men) elderly individuals were tested. Physical fitness tests (Korean Institute of Sports Science, 2012) included 3m sit, walk, and return, grip test, 30 second chair sit and stand, sit and reach, figure 8 walks, and 2 minute stationary march. Postural biomechanics variables included resting calcaneal stance position (RCSP), shoulder slope, pelvic slope, knee flexion angle, leg length difference, thoracic angle, and upper body slope. In statistical analysis, multiple regression was conducted by using stepwise selection method via SAS (version 9.2). Analysis for both men and women revealed significant relationships between physical fitness and age, upper body slope, knee flexion angle, leg length difference. Pelvic and thoracic angle were only related to figure 8 walking and sit and reach in women, while RCSP and shoulder slope had no relationship with any physical fitness variables.

발과 무릎관절 위치가 편마비 환자의 안쪽넓은근과 가쪽넓은근 근활성도에 미치는 영향 (The Effects of Foot and Knee Position on Electromyographic Activity of the Vastus Medialis and Vastus Lateralis for Hemiplegic Patients)

  • 장준혁;김경환;김태호;한동욱
    • The Journal of Korean Physical Therapy
    • /
    • 제22권4호
    • /
    • pp.21-28
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the electromyographic (EMG) activity of vastus medialis oblique (VMO) and vastus lateralis (VL) muscles on foot position and knee angle for hemiplegia patients. Methods: Ten stroke subjects (10 males) participated in the study. Subjects were all right-hemiplegic patients. All subjects did $0^{\circ},\;20^{\circ}$ and $40^{\circ}$ knee flexion while maintaining the foot in a neutral position, or at $30^{\circ}$ adduction or at $30^{\circ}$ abduction. Surface EMG data were collected for VMO and VL muscles on the non-hemiplegic side and hemiplegic side. Collected data were analyzed using two-way ANOVA. Results: VMO and VL activities for the non-hemiplegic and the hemiplegic sides were highest for $40^{\circ}$ knee flexion while maintaining the three foot positions. There were no significant differences in EMG activity of the VMO and VL muscles with different foot positions. There were significant differences between VMO and VL activity for knee flexion angle while maintaining the foot in neutral (p<0.05), at $30^{\circ}$ adduction (p<0.05), or at $30^{\circ}$ abduction (p<0.05). Conclusion: Foot position does not influence VMO and VL activities. But, knee flexion exercise in a closed chain can increase VMO and VL muscle activity for hemiplegic patients. In particular, VMO and VL activities for both the non-hemi side and the hemi side were highest for $40^{\circ}$ knee flexion.

Comparison of Triceps Surae EMG in Plantar Flexion Test of MMT at Different Knee Angles

  • Lee, Han Ki;Lee, Jun Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권1호
    • /
    • pp.40-47
    • /
    • 2018
  • This study was conducted to examine changes in the muscle activity of the triceps surae, specifically the gastrocnemius and the soleus, depending on the angle of the knee joint during the manual muscle test (MMT) of the plantar flexion of the ankle. The muscle activity of the medial and lateral heads of the gastrocnemius was statistically significantly reduced when the angle of the knee joint was $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$ compared to when the angle was $0^{\circ}$. However, there was no statistically significant difference in muscle activity at the angles of $15^{\circ}$ and $30^{\circ}$ or $45^{\circ}$. There was no statistically significant difference in the muscle activity of the soleus depending on the angle of the knee joint. The ratio of the muscle activity of the soleus to that of the triceps surae showed a statistically significant increase when the angle was $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ compared to when the angle was $0^{\circ}$. However, there was no statistically significant difference in muscle activity at the angles of $15^{\circ}$ and $30^{\circ}$ or $45^{\circ}$. When the angle of the knee joint was $15^{\circ}$ or higher during the test of the isolated soleus, the muscle activity of the gastrocnemius was reduced. These results indicate that the angle is suitable for the test of the isolated soleus, but there was no statistically significant difference in the muscle activity of the gastrocnemius when the angle was higher than $15^{\circ}$. Therefore, it can be concluded that the most suitable angle of the knee joint for the isolated MMT test of the soleus is $15^{\circ}$.

Effects of Landing Foot Orientations on Biomechanics of Knee Joint in Single-legged Landing

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2018
  • Objective: This study aimed to investigate the influence of landing foot orientations on biomechanics of knee joint in order to identify vulnerable positions to non-contact knee injuries during single-legged landing. Method: Seventeen men (age: $20.5{\pm}1.1 years$, height: $175.2{\pm}6.4cm$, weight: $68.8{\pm}5.8kg$) performed single-leg drop landings repeatedly with three different landing foot orientations. They were defined as toe-in (TI) $30^{\circ}$ adduction, neutral (N, neutral), and toe-out (TO) $30^{\circ}$ abduction positions. Results: The downward phase time of TI was significantly shorter than those of N and TO. The flexion and valgus angle of N was greater than those of TI and TO at the moment of foot contact. At the instance of maximum knee flexion, N showed the largest flexion angle, and TO position had the largest varus and external rotation angles. Regarding ground reaction force (GRF) at the moment of foot contact, TO showed the forward GRF, while others showed the backward GRF. TI indicated significantly larger mediolateral GRF than others. As for the maximum knee joint force and joint moment, the main effect of different foot positions was not significant. Conclusion: TI and TO might be vulnerable positions to knee injuries because both conditions might induce combined loadings to knee joint. TI had the highest mediolateral GRF with a shortest foot contact time, and TO had induced a large external rotation angle during downward phase and the peak forward GRF at the moment of foot contact. Conclusively, N is the preferred landing foot orientation to prevent non-contact knee injuries.

지지 면 조건에 따른 무릎관절의 관절 위치 재현능력 비교 (Comparison of the Joint Position Sense at Knee Joint According to Surface Conditions)

  • 홍영주;원종혁;권오윤
    • 한국전문물리치료학회지
    • /
    • 제14권3호
    • /
    • pp.90-96
    • /
    • 2007
  • The purpose of this study was to compare the joint position sense at the knee joint at 3 different surface conditions by using the active knee joint angle reproduction test in the standing position. Twenty healthy volunteers (10 males and 10 females) age 20~29 years were recruited for this study. The knee joint position senses were assessed at three different surface conditions: on the floor (stable condition), TOGU (soft condition), and seat fit (unstable condition) in a closed kinetic chain. Testing orders were selected randomly. The absolute angle error was defined as the absolute difference between target angles ($30^{\circ}{\sim}45^{\circ}$ knee flexion) and subject perceived angle of the knee flexion. One way ANOVA was used to compare the absolute angle of error among 3 different conditions. The Independent t-test was used to compare the absolute angle of error between male and female. The error angles were significantly different among surface conditions ($1.3^{\circ}{\pm}1.2^{\circ}$ for the floor, $2.1^{\circ}{\pm}0.9^{\circ}$ for the TOGU, and $4.4^{\circ}{\pm}1.8^{\circ}$ for the seat fit, p<.05). There was no significant difference in error angle between male and female. In conclusion, the joint position sense of the knee joint in the closed kinetic chain decreased at unstable surface conditions. The result of this study indicates that surface conditions should be considered when assessing and training the joint position sense of the knee joint in clinical setting.

  • PDF

발목관절의 각도가 무릎관절 폄근의 근활성도에 미치는 영향 (The Effects of Ankle Joint Angle on Knee Extensor Electromyographic Activity)

  • 여상석;권중원;김중선
    • 대한물리의학회지
    • /
    • 제4권1호
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : The purpose of this study was to find the effect of ankle joint angle on knee extensor electromyographic activity following knee extension exercise. Methods : Ten male university students participated in the study. The subjects performed isometric maximal voluntary knee extensor contractions (MVC) and knee extensor EMG activity measured in with three different ankle joint angle. The EMG activity of rectus femoris(RF), vastus medialis(VM), vastus lateralis(VL) were measured using surface electromyography. Results : EMG activity of vastus lateralis following the change of ankle joint angle was shown statistically significant difference. Conclusion : Ankle plantar flexion position increase EMG activity of vastus lateralis during knee extension exercise.

  • PDF