• Title/Summary/Keyword: Knee

Search Result 3,543, Processing Time 0.033 seconds

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

The Effects of the Manual Intervention and Self Corrective Exercise Models of General Coordinative Manipulation on the Distorsional Leg (전신조정술의 맨손 중재와 자가교정운동 모형이 휜 다리의 교정에 미치는 영향)

  • Kim, Yunseo;Moon, Sangeun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2015
  • Purpose: The purpose of this study was to analyze the effect of the manual intervention and self corrective exercise models of GCM(General Coordinative Manipulation) on the groups bow-knee and knock-knee. Methods: GCM Center of 23 members were divided into the two different groups. 12 members of group bow-knee and 11 members of group knock-knee applied to each manual intervention and self corrective exercise models of GCM. Two different groups were applied to 1 cycle a day for 4 weeks, 3 times a week. Results: The effect of manual intervention and self corrective exercise models of GCM on the groups bow-knee and knock-knee was significant(z<.05). The relationship between groups bow-knee and knock-knee was no significant(z>.05). Conclusion: the manual intervention and self corrective exercise models of GCM was contributed in the Correct recovery of bow-knee and knock-knee(z<.05).

Effects of Repetitive Sit to Stand Training on the Knee Extensor Strength and Walking Ability in Subject with Total Knee Replacement Patients

  • Park, Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2021
  • Purpose: The purpose of this study was to verify the effectiveness of repetitive sit to stand training to improve knee extensor strength and walking ability of total knee replacement patients. Methods: In this study, 12 patients with total knee replacement patients were recruited from a rehabilitation hospital. They were divided into two groups: a repetitive sit to stand group (n=6) and a control group (n=6). They all received 30 minutes of continuous passive motion (CPM). After that, the repetitive sit to stand group performed repetitive sit to stand training, and the control group performed resistance exercise for 15 minutes five times a week for 2 weeks. After 2 weeks of training, knee extensor strength and spatiotemporal gait parameters were measured. Knee extensor strength was measured by Biodex system 3, walking ability was measured by Biodex gait trainer 2. Paired t test was performed to verify the difference between before and after intervention within the group, and analysis of covariance was used to verify the differences between the two groups. Results: After the training periods, the repetitive sit to stand group showed a significant improvement in knee extensor muscle strength, walking speed, step length of the operated side, and step length of the non-operated side (p<0.05). Conclusion: The results of this study showed that repetitive sit to stand training was more effective in improving knee extensor muscle strength and walking ability. Therefore, to strengthen knee extensor muscles and improve the walking ability of total knee replacement patients, it is necessary to consider repetitive sit to stand training.

The Effect of Hand Moxibustion Therapy on Knee Joint Pain, Joint Range of Motion and Discomfort during ADL in Elderly People (수지뜸요법이 노인의 슬관절통증, 관절가동범위 및 일상생활활동 불편감에 미치는 영향)

  • Woo Soon-Nyeol;Yeo Hyun-Joo;Kim Kyung-Suk;Park Jeong-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.10 no.2
    • /
    • pp.244-253
    • /
    • 2003
  • Purpose: This study was done for the purpose of testing the effects of hand moxibustion on pain in the knee joint, range of motion of the knee, and discomfort during ADL in elderly persons with knee joint pain. Method: Nonequivalent control group pre-post test research design was used. The participants were 35 elders who had knee joint pain. Sixteen were assigned to the experimental group and 19 to the control group. The instruments used for this study were the CRS (Graphic rating scale) for knee joint pain, goniometer for knee joint ROM, and modified ADL questionnaire developed by Lee. Analysis of data was done by percents, means and standard deviation, $x^2$-test, t-test, and ANCOVA using SPSS WIN 10.0. Result: The pain score for the right knee joint after hand moxibustion was significantly different between the experimental group and the control group after hand moxibustion (p=.035). The pain score for the left knee joint was not significantly different between the experimental group and the control group after hand moxibustion (p=.075). Right and left knee ROM scores were significantly different between the experimental group and the control group after hand moxibustion (Right p=.000, Left p=.034). Discomfort of ADL score was not significantly different between the experimental group and the control group after hand moxibustion (p=.053). Conclusion: In summary, knee joint pain in elders after hand moxibustion decreased and knee ROM in elders after hand moxibustion increased. So it would be useful for nurses to provide hand moxibustion as an alternative therapy to elders with knee joint pain in the community and thus reduce joint pain and increase knee ROM.

  • PDF

Knee Joint Control of New KAFO for Polio Patients Gait Improvement (소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어)

  • 강성재;조강희;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque (족저굴곡과 무릎 신전 토크를 이용한 보행 재활 훈련용 장하지 보조기 개발)

  • Kim, Kyung;Kim, Jae-Jun;Heo, Min;Jeong, Gu-Young;Ko, Myoung-Hwan;Kwon, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.948-956
    • /
    • 2010
  • The purpose of this study was to test the effectiveness of a prototype KAFO (Knee-Ankle-Foot Orthosis) powered by two artificial pneumatic muscles during walking. We had previously built powered AFO (Ankle-Foot Orthosis) and KO (Knee Orthosis) and used it effectively in studies on assistance of plantaflexion and knee extension motion. Extending the previous study to a KAFO presented additional challenges related to the assistance of gait motion for rehabilitation training. Five healthy males were performed gait motion on treadmill wearing KAFO equipped with artificial pneumatic muscles to power ankle plantaflexion and knee extension. Subjects walked on treadmill at 1.5 km/h under four conditions without extensive practice: 1) without wearing KAFO, 2) wearing KAFO with artificial muscles turned off, 3) wearing KAFO powered only in plantaflexion under feedforward control, and 4) wearing KAFO powered both in plantaflexion and knee extension under feedforward control. We collected surface electromyography, foot pressure and kinematics of ankle and knee joint. The experimental result showed that a muscular strength of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be lower due to pneumatic assistance and foot pressure of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be greater due to power assistance. In the result of motion analysis, the ankle angle of powered KAFO in terminal stance phase was found a peak value toward plantaflexion and there were difference of maximum knee flexion range among condition 2, 3 and 4 in mid-swing phase. The current orthosis design provided plantaflexion torque of ankle jonit in terminal stance phase and knee extension torque of knee joint in mid-swing phase.

Analysis of Correlation Between Knee Function Score and Knee Strength and Muscular Endurance According to the position of Elite Female Handball Athletes (엘리트 여자 핸드볼 선수들의 포지션별 무릎 기능평가와 무릎의 근력 및 근지구력의 상관관계 분석)

  • Kim, Hyun-Chul;Park, Ki-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.3
    • /
    • pp.127-133
    • /
    • 2020
  • PURPOSE: The study examined the relationship between the knee function score and knee strength and muscular endurance of an elite female handball athletes according to their position in the team. METHODS: Thirty handball athletes participated on the study: 12 front positions, 12 back positions, and five goalkeepers. The knee function score consisted of symptoms, pain, daily activity, sports and recreation, and quality of life. In addition, CSMI (Cybex, USA) was used to measure the strength and muscular endurance of the knee. The muscular strength and muscular endurance were measured at an angular velocity of 60°/s and 180°/s, respectively. RESULTS: The overall items of the knee function score showed a significant difference (p = .017), and goalkeepers had significantly higher scores than the back positions. In addition, significant differences were observed in all five items depending on the position (p ≤ .05). On the other hand, both the flexor and extensor muscles of the knee strength and muscular endurance were not significant. Moreover, there was no correlation between the knee function score and the knee strength and muscle endurance. CONCLUSION: Elite female handball athletes have different knee functions score depending on their position in the team, but the, strength and muscular endurance of the knee were similar for each position. Furthermore, the knee function score showed no correlateion with the strength and muscular endurance of the knee.

Gender Differences of Knee Valgus Angle during Vertical Drop Landing in College Students (남녀 대학생들의 수직착지 시 성에 따른 무릎 외반각도의 차이)

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • The purpose of this study was to determine whether gender differences existed in knee valgus kinematics in college students when performing a vertical drop landing. The hypothesis of this study was that females would demonstrate greater knee valgus motion. These differences in knee valgus motion may be indicative of decreased dynamic knee joint control in females. This study compared the initial knee valgus angle and maximum knee valgus angle at the instant of impact on vertical drop landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and two-dimensional video motion analysis software were used to analyze the kinematic data. There was significant difference in the mean knee valgus angle at initial contact landing between the two groups (Mean=$7.88^{\circ}$, SD=$4.24^{\circ}$ in males, Mean=$12.93^{\circ}$, SD=$2.89^{\circ}$ in females). The range of knee valgus angle on landing (Mean=$3.25^{\circ}$, SD=$5.72^{\circ}$ in males, Mean=$11.44^{\circ}$, SD=$6.39^{\circ}$ in females) was differed significantly (p<.05). The maximal angle of knee valgus on landing (Mean=$10.91^{\circ}$, SD=$6.89^{\circ}$ in males, Mean=$24.25^{\circ}$, SD=$6.38^{\circ}$ in females) was also differed significantly (p<.05). The females landed with a larger range of knee valgus motion than the males and this might have increased the likelihood of a knee injury. The absence of dynamic knee joint stability may be responsible for increased rates of knee injury in females. No method for accurate and practical screening and identification of athletes at increased risk of ACL injury is currently available to target those individuals that would benefit from neuromuscular training before sports participation.

  • PDF

Electromyographic Analysis of Gluteus Maximus, Gluteus Medius, Hamstring and Erector Spinae Muscles Activity During the Bridge Exercise With Hip External Rotation in Different Knee Flexion Angles in Healthy Subjects

  • Lee, Kyung-eun;Baik, Seung-min;Yi, Chung-hwi;Kim, Seo-hyun
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.91-98
    • /
    • 2019
  • Background: The bridge exercise targets the gluteus maximus (Gmax) and gluteus medius (Gmed). However, there is also a risk of dominant hamstring (HAM) and erector spinae (ES) muscles. Objects: To analyze the muscle activity the of Gmax, Gmed, HAM and ES during the bridge exercise with and without hip external rotation in different degrees of knee flexion. Methods: Twenty-three subjects were participated. The electormyography (EMG) activity of the Gmax, Gmed, HAM and ES muscles was recorded during the exercise. The subjects performed the bridge exercise under four different conditions: (a) with $90^{\circ}$ knee flexion, without hip external rotation (b) with $90^{\circ}$ knee flexion, with hip external rotation (c) with $135^{\circ}$ knee flexion, without hip external rotation (d) with $135^{\circ}$ knee flexion, with hip external rotation. Results: There was no significant interaction effect between the degree of knee flexion and hip external rotation. There was a significant main effect for degree of knee flexion in Gmax, HAM muscles activity. Gmax muscle activity was significantly greater in the $135^{\circ}$ knee flexion position than in the $90^{\circ}$ knee flexion position (p<.001). While HAM muscle activity was significantly less in $135^{\circ}$ knee flexion position than in the $90^{\circ}$ knee flexion position (p<.001). ES muscle activity was significantly less in the $135^{\circ}$ knee flexion position than in the $90^{\circ}$ knee flexion position (p=.002). The activity of both the Gmax and Gmed muscles was significantly greater with hip external rotation (p<.001 and p=.005, respectively). Conclusion: For patients performing the bridge exercise, positioning the knee in $135^{\circ}$ of flexion with hip external rotation is effective for improving Gmax and Gmed muscle activity while decreasing HAM, and ES muscle activity.

Lateral Symmetry of Center of Pressure During Walking in Patients With Unilateral Knee Osteoarthritis

  • Kim, Si-hyun;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.77-83
    • /
    • 2021
  • Background: Although symmetry of spatio-temporal parameter and center of pressure (COP) shift during walking is associated with knee adduction moment, research on clinical association with knee osteoarthritis (OA)-related knee pain and functional scores is lacking. Objects: The aims were 1) to compare symmetry of gait parameters and COP-shift in patients with unilateral knee OA and pain and matched controls, and 2) to investigate the relationship between symmetry of gait parameters and COP-shift, and clinical measures. Methods: Female subjects (n = 16) had with unilateral radiological knee OA and pain. Healthy controls (n = 15) were age-matched to OA group. Symmetry of foot rotation, step length, stance and swing phase, lateral symmetry of COP and anterior/posterior symmetry of COP during walking was assessed. To assess the clinical variables, pain intensity, pain duration and function using Knee Osteoarthritis Outcome Survey (KOOS) subscales were collected. We compared symmetry between groups using Mann-Whitney U-test or independent t-test. Relationships between clinical measures and symmetry index measured using Spearman's correlation test. Statistical significance was set at α = 0.05. Results: Knee OA group showed significantly greater values of only lateral symmetry of COP (p < 0.01) than healthy group. Values of lateral symmetry of COP had moderate or strong correlation significantly with the intensity of knee pain, pain duration, and scores of all KOOS subscales (p < 0.01). Conclusion: Patients with unilateral knee OA and pain showed more asymmetry of lateral COP-shift during walking compared with matched healthy controls. In addition, larger asymmetry of lateral COP-shift has the moderate or strong association with worse of knee pain, worse in KOOS scores and longer duration of knee pain. Asymmetry of lateral COP-shift during walking may be one of the characteristics of unilateral knee OA as the compensatory strategy response to unilateral OA of the knee.