• Title/Summary/Keyword: Kjeldahl

Search Result 110, Processing Time 0.027 seconds

Proteolysis of Defatted Rice Bran Using Commercial Proteases and Characterization of Its Hydrolysates (탈지미강 단백질의 가수분해 및 분해물의 특성 연구)

  • Kim, Chang-Won;Kim, Hyun-Seok;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • The defatted rice bran (DRB) was enzymatically hydrolyzed using eight commercial proteases for 4hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using lowry, semimicro kjeldahl and gravimetric method using weight difference before and after enzymatic hydrolysis. In lowry and kjeldahl protein assay method, two proteases (Alcalase and Protease N) were found to be the most effective enzymes. In gravimetric method, 60.6~118.3 mg protein/g DRB was hydrolyzed after eight commercial proteases treatments. Similar to lowry and kjeldahl method, 118.3 and 107.1 mg protein/g DRB were hydrolyzed after Alcalase and Protease N treatments, respectively. When two or three effective proteases (Protamex, Alcalase and Protease N) were applied at one time to obtain synergistic effect, significant increase (P<0.05) was observed when three proteases were applied at one time (63.4 mg protein/g DRB in lowry method and 204.5 mg protein/g DRB in gravimetric method). This result suggests that Alcalase and Protease N were the most effective enzymes for proteolysis of DRB and three commercial enzymes (Protamex, Alcalase and Protease N) showed the synergistic effect on the hydrolysis of DRB.

Studies on Biological Nitrogen Fixation -III. Influences of organic matter sources, kinds and amount of fertilizer nitrogen on the changes of biological N2-fixation and kjeldahl nitrogen under dark and light condition in submerged paddy soil (생물학적(生物學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -III. 담수토양(湛水土壤)에서 유기물종류(有機物種類), 질소비종(窒素肥種)과 시비량(施肥量)을 달리했을때 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Lee, Myeong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.261-268
    • /
    • 1987
  • A green house experiment was conducted to find out the differences in the amount of biologically fixed nitrogen and kjeldahl nitrogen on the different soil texture, kinds and amounts of fertilizer nitrogen under light (photosynthetic $N_2$-fixation) and dark (heterotrophic $N_2$-fixation) condition in submerged paddy soil. The reults obtained were summarized as follows; 1. The amount of biologically fixed nitrogen per mg carbon from different organic matter was obtained as 0.13 mg in glucose, 0.09 mg in rice straw, and 0.07 mg in refused mushroom compost and barley straw under 60 days of incubation. 2. Nitrogen fixing activities were decreased with increase of fertilizer nitrogen and those tendency was pronounced more in sandy soil with application of urea than that of ammonium sulfate. 3. The application of ammonium sulfate in sandy soil under light condition was increased the photosynthetic $N_2$-fixation and the applied urea was remarkably reduced the heterotrophic $N_2$-fixation in sandy soil. The proportion of biologically fixed total nitrogen after experiment in sandy soil was obtained as 25% for dark(heterotrophic $N_2$-fixation) and 75% for light (photosynthetic $N_2$-fixation) condition. On the other hand, very similar biological $N_2$-fixing tendency was obtained between kinds of nitrogen fertilizer and two light condition in clayey soil. 4. The kjeldahl nitrogen was remarkably decreased after experiment under dark condition with application of urea than that of light condition with ammonium sulfate, and no remarkable decreasing tendency was obtained in clayey soil between two kinds of fertilizer nitrogen. 5. The high significant positive correlationship was obtained between calculated biological nitrogen fixation by acetylene reducing activity and kjeldahl nitrogen after experiment under light (y=0.8488X-5.9632, $r=0.9928^{**}$, n=21) and dark (y=0.8795X-7.1056, $r=0.9782^{**}$, n=21) condition. In this experiment condition, conversion factors of 6:1 was obtained from biological nitrogen fixation to soil nitrogen.

  • PDF

Study on Nitrogen·Phosporus Absorption and Growth of Seedling of Prunus serrulata var. serrulata f. spontanea(E.H. Wilson) C. S. Chang by Treatment with Dried Swine Excrement (고형돈분 처리에 따른 벚나무의 유묘생장 및 질소·인산 흡수에 관한 연구)

  • Yeum, Chang-Ho;Lim, You-Mi;Chae, Seung-Min;Lee, Chang-Heon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.17-27
    • /
    • 2011
  • Prunus serrulata var. serrulata f. spontanea (E. H. Wilson) C. S. Chang was treated with dried swine excrement at various concentration levels, and their growth reactions and the contents of total kjeldahl nitrogen and total phosphoric acid were analyzed. The result is as follows; 1. When the plants were treated with 0.25% of dried swine excrement, the seed germination rate of Prunus serrulata var. serrulata f. spontanea was higher than that of the control. However, it showed a tendency to decrease when the treatment concentration got higher than 0.25%. 2. The growth rate of species was highest when they were treated with 0.25% of dried swine excrement. It tended to decrease with higher treatment concentration than 0.25%. Significant difference was clear between the control and the experimental plants of Prunus serrulata var. serrulata f. spontanea. 3. The contents of nitrogen and phosphoric acid in Prunus serrulata var. serrulata f. spontanea also got higher as the concentration of dried swine excrement increased. However, the content of total kjeldahl nitrogen was highest in the leaves, and followed by the roots and stems. In contrast, the content of total phosphoric acid were highest in the roots, and followed by the leaves and stems. Therefore, stems had the lowest contents of both nitrogen and phosphoric acid. 4. The contents of total kjeldahl nitrogen and total phosphoric acid in the soil were measured before and after the growth experiment of Prunus serrulata var. serrulata f. spontanea treated with dried swine excrement. The contents of nitrogen and phosphoric acid significantly decreased after the experiment. In conclusion, the contents of total kjeldahl nitrogen and total phosphoric acid accumulated in the plants increased as the concentration level of dried swine excrement got higher. The seed germination and plant growth rates were best at 0.25% treatment of dried swine excrement. The treatment of dried swine excrement may bring high effects on increasing the plant growth rate but could damage the plants with higher concentration than they need. Different optimal concentration levels of dried swine excrement for different plants should be found before it is used as fertilizer.

Influence of Grass Cover on Water Use and Shoot Growth of Young 'Fuji'/M.26 Apple Trees at Three Soil Water Regimes in Double Pot Lysimeters (토양수분영역을 달리한 double pot-lysimeter에서 자라는 '후지'/M.26 사과나무의 수분이용과 신초 생장에 미치는 잔디피복의 영향)

  • Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • This study measures the influence of grass cover on water use and shoot growth of apple trees growing under different soil water regimes in temperate climate conditions and evaluates monthly crop coefficients of such conditions during four months of the growing season in 1995. To do so, double pot lysimeter experiments of 3-year-old Fuji' apple (Males domestica Borkh.) trees under a transparent rain shield were designed and installed. Trees were triplicate under three soil water regimes: (A) drip-irrigation at -50 kPa of soil matric potential (IR50). (B) drip-irrigation at -80 kPa of soil matric potential (IR80), and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, two soil surface conditions were tested: the soil surface bare, and covered with turf grasses. Mean monthly water use increased with increasing soil matric potential for drip irrigation and was greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees ($r^2$ values of $0.953^{***}$ for turf grass-covered system and of $0.862^{***}$ for bare surface system), while those obtained in the WT45 treatment fluctuated, Duncan's multiple range tests for shoot growth showed that grass-covered IR50 was most favorable to apple trees. while bare surface waterlogged situation was most adverse at least in part due to a lack of oxygen in the root zone. Mid-season leaf Kjeldahl-N was higher in drip-irrigated apple trees than in WT45 trees, while soil Kjeldahl-N was not different irrespective of treatments.

  • PDF

Development of Near Infrared Spectroscopy(NIRS) Equation of Crude Protein in Wheat Germplasm

  • Hyemyeong Yoon;Myung-Chul Lee;Yumi Choi;Myong-Jae Shin;Sejong Oh
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.100-100
    • /
    • 2020
  • Wheat is mainly composed of carbohydrate but it contains a moderate amount of protein, which gives a very useful characteristics to flour food such as the unique elasticity and stickiness of the dough. We developed a calibration equation for analyzing crude protein content using Near Infrared Spectroscopy to quick analyze the crude protein content of wheat germplasm stored in the National Agrobiodiversity Center, RDA, Korea. The 1,798 wheat germplasms were used to draw up the calibration formula. The crude protein's interval distribution of 1,798 wheat germplasms used for the calibration was 7.04-20.84%, the average content was 13.2%, and standard deviation was 2.6%. The germplasms distribution was composed of a suitable group for the preparation of the calibration formula because the content distribution was a normal, excluding the 13.0-15.5% content section. In order to verify the applicability of the NIRS prediction model, we measured the crude protein content of the 300 wheat germplasms that were not used for the calibration using both Kjeldahl analysis and NIR spectrum. The analysis value calculated using each method were statistically processed, and the test results and statistical indicators of the predictive model were compared. As a result, The R2 value of the optimized NIRS prediction model was 0.997, and the Standard error of Calibration value(SEC) was 0.132, and slope value was 1.000. With prediction model selection, compared to Kjeldahl method, R2 values were 0.994(Kjeldahl), 0.998(NIRS), and the SEC value were 0.191 and 0.132, respectively, comparing the statistical indices of the forecast model. And slope value were 1.013, 1.000, respectively. The analysis of crude protein content by the NIRS predictive model developed by each statistical index showing similar figures is judged to show a high degree of correlation with the Kjeldahl analysis. The proven calibration equation will be used to measure the crude protein content of wheat germplasms held by the National Agrobiodiversity Center, and by dividing the wheat germplasms by their use according to the crude protein content, it will provide useful information to relevant researchers.

  • PDF

intake/Balanc of Dietary Protein in Korean College Women (한국인 일부 여대생에서 단백질 흡수 및 평형)

  • 오승호;최인선
    • Korean Journal of Community Nutrition
    • /
    • v.2 no.4
    • /
    • pp.523-529
    • /
    • 1997
  • This study was conducted to obtain accurate data on the intake, digestibility and nitrogen balance of protein in Korean college women. Subjects were 8 female college students, aged from 21 to 23, and maintained their menu and life patterns regular during a 4- week study. The same amount of diet that the subjects had consumed, and feces and urine were collected and measured to extract their nitrogen content by Kjeldahl method. From this data, apparent digestibility and the body nitrogen balance were estimated by determing daily protein intake and excretion. The daily protein intake was 56.9$\pm$1.4g and daily fecal protein loss was 6.3$\pm$0.2g. The apparent digestibility of protein was 89.6$\pm$0.7$\%$. The daily nitrogen intake measured by Kjeldahl method was 9.43$\pm$0.2g. The urinary nitrogen excretion was 7.64$\pm$0.23g and fecal nitrogen excretion was 1.02$\pm$0.03g. The nitrogen balance indicated a positive balance of 0.45$\pm$0.18g. (Korean J Community Nutrition 2(4) : 523-529, 1997)

  • PDF

Evaluation of deproteinized bovine bone mineral as a bone graft substitute;A comparative analysis of basic characteristics of three commercially available bone substitutes (탈단백 우골의 골이식 대체재로서의 특성에 대한 평가;세 종류의 골 대체재의 기본 특성에 대한 비교분석)

  • Park, Jin-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.863-875
    • /
    • 2005
  • Bovine bone-derived bone substitutes are widely used for treatment of bone defects in dental and orthopedic regenerative surgery. The purpose of this study was to evaluate the basic characteristics of deproteinized bovine bone mineral as a bone graft substitute. Commercially available products from three different bovine bone minerals-Bio-Oss(GeistlichPharma, Switzerland), BBP(Oscotec. Korea), Osteograf/N-300(Dentsply Friadent Ceramed, USA) - were investigated. They were evaluated by scanning electron microscopy(SEM), energy dispersive X-ray spectrometer(EDS), surface area analysis(BET), and Kjeldahl protein analysis. Cell viability on different products was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay. The results of this study indicated that each bone substitute displayed distinct surface properties. Furthermore, Kjeldahl protein analysis indicated that residual crude proteins are present in deproteinized bovine bone mineral. BBP showed relatively large amount of residual protein, which indicated that the possibility of disease transmission can not be safely ruled out. Based on the results of this study, it is suggested that active quality management is strongly needed in operations that involve processing bovine bone tissue for medical use.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Causes of Nitrogen Loss during Animal Manure Analysis (가축분의 정량과정에서 생기는 질소 손실에 대한 여러 원인)

  • Nahm, K.H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.3
    • /
    • pp.215-224
    • /
    • 2001
  • Since nitrogen(N) is a volatile compound affected by many environmental factors, determining the N content of manure tends to be difficult. Upon arrival in the laboratory, the manure should be moist and refrigerated. Manure samples will have variable N contents due to drying temperature, and the presence of soil in the sample will affect N content. Acidification of the sample prevents ammonia volatilization and should be done before drying. It is recommended that manure samples be pretreated with a strong oxidizing agent, KMnO$_4$, followed by digestion under reduced conditions (reduced Fe-$H_{2}$ $SO_{4}$ ), which achieves a complete recovery of both $NO_{3}$ -N and $NO_{2}$ -N without a low recovery of $NH_{4}$ -N, resulting in a more accurate determination of N content. Accuracy of results for N content determined by recently developed rapid analysis techniques in the field should be tested by comparison with results obtained at laboratories using approved standard methods. Most commonly, the Kjeldahl system is used to determine manure N content. More research is needed on the effects of species, breed, age and individuals on the nutrient contents of manure. The procedures for manure sampling on the farm, shipping and handling of the sample until it reaches the laboratory, and the methods of sampling of the manure at the laboratory must be studied. Development of animal agricultural laboratories where feed, manure, soil, and water are all analyzed by appropriate specialists is needed.

  • PDF