• Title/Summary/Keyword: Kiyomi oil

Search Result 2, Processing Time 0.258 seconds

The Volatile Composition of Kiyomi Peel Oil (Citrus unshiu Marcov×C. sinensis Osbeck) Cultivated in Korea

  • Song, Hee-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.292-298
    • /
    • 2008
  • The volatile composition of Kiyomi peel oil cultivated in Korea was studied by using gas chromatography and gas chromatography-mass spectrometry. The peel oil from the Kiyomi fruit was prepared by using a cold-pressing extraction method. Among the 65 components quantified in Kiyomi oil, 25 terpene hydrocarbons and 40 oxygenated compounds were identified, with peak weight percentages measuring 94.5% and 4.9%, respectively. Limonene was the predominant compound (87.5%), followed by myrcene (2.4%), sabinene (0.9%), $\alpha$-pinene (0.8%), $\beta$-sinensal (0.8%), (Z)-$\beta$-farnesene (0.7%), neryl acetate (0.6%), valencene (0.5%), $\alpha$-farnesene (0.5%), and $\alpha$-sinensal (0.5%). A unique characteristic of the volatile profile of the Kiyomi oil was the proportion of aldehydes (2.7%), which resulted from the relative abundance of $\alpha$- and $\beta$-sinensal. Another unique characteristic of the Korean Kiyomi oil was its relative abundance of $\beta$-sinensal, (Z)-$\beta$-farnesene, neryl acetate, valencene, $\alpha$-sinensal and nootkatone. Valencene and $\alpha$- and $\beta$-sinensal were regarded as the influential components of Korean Kiyomi peel oil.

Anti-Obesity Effects of Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) Peel Extracts in 3T3-L1 Adipocytes (제주산 한라봉 과피 추출물의 지방세포에서의 항비만 효과)

  • Lim, Heejin;Seo, Jieun;Chang, Yun-Hee;Han, Bok-Kyung;Jeong, Jung-Ky;Park, Su-Beom;Choi, Hyuk-Joon;Hwang, Jinah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1688-1694
    • /
    • 2014
  • Jeju Hallabong Tangor (Citrus kiyomi${\times}$ponkan) is a Citrus species with a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated the anti-obesity effects of Hallabong Tangor peel extracts before (HLB) and after (HLB-C) bioconversion with cytolase based on modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 adipocytes. Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycone forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with 0.5 mg/mL of Sinetrol (a positive control), HLB or HLB-C. Adipocyte differentiation was inhibited in both citrus groups, but not in control and Sinetriol groups. HLB and HLB-C tended to reduce insulin-induced mRNA levels of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$) and sterol regulatory element-binding protein 1c (SREBP1c). Compared to the control and Sinetrol groups, HLB and HLB-C markedly suppressed insulin-induced protein expression of $C/EBP{\alpha}$ and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The HLB and Sinetrol groups, but not HLB-C group, significantly increased adipolytic activity with higher release of free glycerol compared to the control group in differentiated 3T3-L1 adipocytes. These results suggest that bio-conversion of Hallabong Tangor peel extracts with cytolase increases aglycone flavonoids. Irrespective of bioconversion, both Hallabong Tangor peel extracts exert anti-obesity effects that may contribute to prevention of obesity through inhibition of adipocyte differentiation or induction of adipolytic activity.