• Title/Summary/Keyword: Kitchen.Bathroom exhaust wind velocity

Search Result 3, Processing Time 0.02 seconds

A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments (초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안)

  • Lee, Yong-Ho;Kim, Seong-Yong;Hwang, Jung-Ha;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

A Basic Study on the Utilization of Kitchen and Bathroom Exhaust Wind Velocity in High-Rise Apartment (초고층 공동주택의 주방.욕실 배기풍속 활용을 위한 기초연구)

  • Kim, Seong-Yong;Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.226-231
    • /
    • 2011
  • This study set out to review the air current fluidity in exhaust common ducts by installing an inlet pipe at a leisure space in the PS(Pipe Shaft)room for the sake of wind power generation with kitchen and bathroom exhaust common ducts of all the equipment and air conditioning shafts in high-rise apartment. The air current functionality of kitchen and bathroom exhaust common ducts was reviewed by analyzing wind velocity changes according to changes to the area of exhaust common ducts through a simulation, changes to the wind velocity of the kitchen hood by applying an external inlet pipe, changes to the usage factor of exhaust common ducts, and changes to wind velocity by altering the form of the ventilator at the bottom of the old exhaust common duct. It was a basic study on the utilization of exhaust wind velocity in exhaust common ducts.

  • PDF

A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation (건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구)

  • Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.