• Title/Summary/Keyword: Kirkwood correlation factor

Search Result 7, Processing Time 0.024 seconds

Dielectric Study of Allyl Chloride with 2-Pentanone and 2-Hexanone in Microwave Frequency Range

  • Sudake, Yuvraj;Kamble, Siddharth;Maharolkar, Aruna;Patil, Sunil;Khirade, Prakash;Mehrotra, Suresh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3423-3426
    • /
    • 2012
  • Dielectric measurement on binary mixtures of Allyl chloride (ALC) with 2-Pentanone (2-PE) and 2-Hexanone (2-HE) has been carried out over the entire concentration range using Time Domain Reflectometry (TDR) technique at various temperatures in microwave frequency range of 10 MHz to 10 GHz. The static dielectric constant, excess static dielectric constant (${\varepsilon}^E_S$), effective Kirkwood correlation factor ($g^{eff}$) of binary mixtures over entire concentration range were determined to study the effect of increasing alkyl group of ketones on hetero molecular interaction. It was found that magnitude of excess static dielectric constant of mixtures increases with increase of alky group of ketones. The study reveals that the dipole moment of Allyl chloride in mixture have antiparallelism tendency where as 2-pentanone and 2-hexanone have parallelism tendency. Excess static dielectric constant is also fitted to Redlich-Kister equation to get information about rates of multimers formation.

Dielectric Study of Methyl Acrylate-Alcohol Mixtures Using Time Domain Reflectometry

  • Dharmalingam, K.;Ramachandran, K.;Sivagurunathan, P.;Prabhakar , B.;Khirade, P.W.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2040-2044
    • /
    • 2006
  • Dielectric studies of methyl acrylate with 1-propanol, 1-butanol, 1-heptanol and 1-octanol binary mixtures have been carried out over the frequency range from 10 MHz to 10 GHz at temperatures of 283, 293, 303 and 313 K using Time Domain Reflectometry (TDR) for various concentrations. The Kirkwood correlation factor and excess inverse relaxation time were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The values of the static dielectric constant, relaxation time and the Kirkwood correlation factor decrease with increased concentration of methyl acrylate in alcohol. The Bruggman plot shows a non-linearity of the curves for all the systems studied indicates the heterointeraction which may be due to hydrogen bonding of the OH group of alcohol with C=O of the methyl acrylate. The excess inverse relaxation time values are negative for all the systems at all the temperatures indicates that the solute-solvent interaction hinders the rotation of the dipoles of the system.

Characterization of Heterogeneous Interaction Behaviour in Ternary Mixtures by Dielectric Analysis: The H-Bonded Binary Polar Mixture in Non-Polar Solvent

  • Sengwa, R.J.;Madhvi;Sankhla, Sonu;Sharma, Shobha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.718-724
    • /
    • 2006
  • The heterogeneous association behaviour of various concentration binary mixtures of mono alkyl ethers of ethylene glycol with ethyl alcohol were investigated by dielectric measurement in benzene solutions over the entire concentration range at 25 ${^{\circ}C}$. The values of static dielectric constant $\epsilon_0$ of the mixtures were measured at 1 MHz using a four terminal dielectric liquid test fixture and precision LCR meter. The high frequency limiting dielectric constant $\epsilon_\infty$ values were determined by measurement of refractive index $n_D$ ($\epsilon_\infty\;=\;n_D\;^2$). The measured values of $\epsilon_0$ and $\epsilon_\infty$ were used to evaluate the values of excess dielectric constant $\epsilon^E$, effective Kirkwood correlation factor $g^{eff}$ and corrective correlation factor $g_f$ of the binary polar mixtures to obtain qualitative and quantitative information about the H-bond complex formation. The non-linear behaviour of the observed $\epsilon_0$ values of the polar molecules and their mixtures in benzene solvent confirms the variation in the associated structures with change in polar mixture constituents concentration and also by dilution in non-polar solvents. Appearance of the maximum in $\epsilon^E$ values at different concentration of the polar mixtures suggest the formation of stable adduct complex, which depends on the molecular size of the mono alkyl ethers of ethylene glycol. Further, the observed $\epsilon^E$ < 0 also confirms the heterogeneous H-bond complex formation reduces the effective number of dipoles in these polar binary mixtures. In benzene solutions these polar molecules shows the maximum reduce in effective number of dipoles at 50 percent dilutions. But ethyl alcohol rich binary polar mixtures in benzene solvent show the maximum reduce in effective number of dipoles in benzene rich solutions.

Tempereture Dependent Dielectric Relaxation Study of Aniline in Dimethylsulphoxide and Dimethlformamide Using Time Domain Technique (시간분해기법을 이용한 디메틸 술폭사이드와 디메틸 포름아미드-아닐린용액에서 온도의존 유전이완에 관한 연구)

  • Chaudhari, Ajay;Patil, C.S.;Shankarwar, A.G.; Arbad, B.R.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.201-207
    • /
    • 2001
  • The dielectric relaxation study for aniline-dimethylsulphoxide (DMSO) and aniline-dim.ethylformamide(DMF) has been carried out using the Time domain reflectometry (TDR) technique, at different temperature and concentrations, in the frequency range of 10 MHz to 10 GHz. The dielectric parameters viz. static permittivity, relaxation time, the Kirkwood correlation factor, excess permittivity, excess inverse relaxation time and thermodynamic parameters have been obtained. The calibration method based on least squares fit method has been used. The dielectric parameters show systematic change with temperature and concentrations.

  • PDF

Static Dielectric Constant and Relaxation Time for the Binary Mixture of Water, Ethanol, N. N-Dimethylformamide, Dimethylsulphoxide, and N, M-Dimethylacetamide with 20Hethoxyethanol

  • Ajay Chaudgari;N. M. More;S. C. Mehrotra
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.357-361
    • /
    • 2001
  • Frequency spectra of the complex permittivity of 2-methoxyethanol (2-ME) with water, ethanol, dimethylsulphoxide (DMSO), N,N-dimethylformamide (DMF) and N,N-dimethylacatamide (DMA) have been determined over the frequency range of 10 MHz to 20 GHz at 25 $^{\circ}C$, using the Time domain reflectometry method, for 11 concentrations for each system. The static dielectric constant, dielectric constant at microwave frequency, relaxation time, excess dielectric parameters, and Kirkwood correlation factor have been determined. The relaxation in these systems within the frequency range can be described by a single relaxation time constant, using the Debye model. The parameters show a systematic change with the concentration.

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay;Chaudhari, H.C.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1403-1407
    • /
    • 2004
  • Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Dielectric Relaxation in Ethylene Glycol - Dimethyl Sulfoxide Mixtures as a Function of Composition and Temperature

  • Undre, P.B.;Khirade, P.W.;Rajenimbalkar, V.S.;Helambe, S.N.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.416-423
    • /
    • 2012
  • Using time domain reflectometry, the complex dielectric spectra between 10 MHz to 20 GHz has been measured in the whole composition range at 10, 20, 30 and $40^{\circ}C$ for the binary mixtures of ethylene glycol and dimethyl sulfoxide. For all the mixtures, only one dielectric loss peak was observed in this frequency range. The relaxation in these mixtures can be described by a single relaxation time using the Debye model. A systematic variation is observed in dielectric constant (${\varepsilon}_0$) and relaxation time (${\tau}$). The excess permittivity (${\varepsilon}^E$), excess inverse relaxation time $(1/{\tau})^E$, Kirkwood correlation factor (g) and thermodynamic parameters viz. enthalpy of activation (${\Delta}H$) and Gibbs free energy of activation (${\Delta}G$) have been determined, to confirm the formation of hydrogen bonded homogeneous and heterogeneous cooperative domains, the dynamics of solute - solute interaction and the hindrance to molecular rotation in the hydrogen bonded glass forming ethylene glycol - dimethyl sulphoxide system.