• Title/Summary/Keyword: Kiribati

Search Result 6, Processing Time 0.018 seconds

Spatial-Temporal Distribution Characteristics of Bigeye and Yellowfin Tunas in Kiribati Waters

  • Taanga, Aketa Mature;Cai, Yi-Hui;Lu, Hsueh-Jung;Ni, I-Hsun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.174-179
    • /
    • 2006
  • Information on the distribution characteristics of tuna resources in Kiribati EEZ waters in three zones (Zone 1: west Gilbert region, Zone 2: central Phoenix region, and Zone 3: east Line region) as well as their relationship with the ocean environment is critical for sustainable managing the migratory tuna resource and fishing practices in this region. Therefore, this study is designed to investigate the spatial and temporal distribution and concentration of bigeye (BET) and yellowfin tuna (YFT) in Kiribati EEZ waters in relation to sea surface temperature (SST) and thermocline depth so as to better understand the tuna resources management basis in Kiribati waters. The geographic and temporal distribution and concentration were first displayed. Paired t-test was utilized to compare the distribution between the two tuna species based on Catch per Unit Effort (CPUE) derived from the Korean longliners during 1996 to 2004, and also among the three zones of Kiribati EEZ waters. Environmental conditions of the three zones were then compared and correlated with the CPUE of YFT and BET. In addition, the effect of ENSO phenomena on the environmental conditions and the distribution of YFT and BET within the three zones were also examined. The BET was relatively higher in the Zone 3 whereas YFT predominate in the Zone 1 and the Zone 2 due to oceanographic differences among the three zones and the ecological habitats of the two tuna species. It was suggested that El Ni?o/Southern Oscillation (ENSO) phenomena altered the oceanographic conditions of the three zones that in turn change the distribution of the two tuna species. During El Ni?o, the warm phase of ENSO, resulted in having more BET in all the three zones and the opposite observed during La Ni?a (cold phase) replacing by having relatively higher catch rate for YFT, particularly in the Zone 2. Although the results of the study are from short periods (1996 to 2004) in considering oceanographic anomality, these environmental variations should be considered into sustainable fisheries management of tuna fisheries in Kiribati EEZ waters.

  • PDF

Characteristics of Astronomical Tide and Sea Level Fluctuations in Kiribati and Neighboring Countries (키리바시와 주변국 천문조위 특성 및 해수면 변동)

  • Kim, Yangoh;Kim, Jongkyu;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.746-752
    • /
    • 2022
  • Kiribati, a South Pacific island, and its surrounding countries are gradually submerging to rising sea levels. The sea level continues to change according to the degree of thermal expansion of glaciers and seawater that decreases with increase in temperature. Global warming affects both the amount and volume of seawater, thus increasing sea level. Tidal phenomena occur twice a day to the attraction of celestial bodies such as the moon and the sun. The moon changes the angle of orbiting surface with the Earth equator every 18.6 years, and the magnitude of the tidal force changes depending on the distance between the Earth equator and the moon orbital surface. The University of Hawaii Sea Level Center selected Tarawa, Christmas, Kanton of Kiribati,, Lautoka, Suva of Fiji,Funafuti of Tuvalu, Nuk1u'alofa of Tonga, and Port Vila of Vanuatu. When comparing tide levels for each year for 19 years, the focus was on checking the change in sleep to Tide levels, and rising sea levels was the effect of Tide levels. The highest astronomical tides (HAT) and lowest astronomical tides (LAT) were identified as Tarawa 297.0, 50.8 cm, Christmas 123.8, 19.9 cm, Kanton 173.7, 39.9 cm, Lautoka 240.7, 11.3 cm, Funafuti 328.6, 98.4 cm, Nuk1u'alofa 188.8, 15.5 cm, Port Vila 161.5, -0.5cm, respectively. The Sea level rising speed was Tarawa 3.1 mm/year, Christmas -1.0 mm/year, Kanton 1.6 mm/year, Lautoka 3.1 mm/year, Suva 7.4 mm/year, Funafuti 1.4 mm/year, Nuk1u'alofa 4.2 mm/year, and Port Vila -1.2 mm/year, respectively

Analysis on fishing conditions of the Korean tuna purse seiner operating in the western and central Pacific Ocean (중서부태평양 한국 다랑어 선망어선의 조업실태 분석)

  • PARK, Yong-Ye;LEE, Yoo-Won;LEE, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • To suggest more efficient fishing operation, it was analyzed using five years (2011~2015) catch data of six Korean-flagged tuna purse seiners (with 1000 mt of haul capacity) operating in the western and central Pacific Ocean. In terms of annual total catch, it presented a two-year cycle of variation on catch, showing that catches of 2012, 2014 and 2015 were high, whereas those of 2011 and 2013 were low. The proportions on fishing effort of associated set were around 21.9~30.8% having 21.5~45.0% of total catch. In this study, there was no significant difference between catches of unassociated set and associated set. When considered having good fishing conditions, fishing activities were concentrated in the areas of Papua New Guinea (PNG) and Kiribati, while it showed that fishing ground spreaded out to the areas of not only PNG and Kiribati but also Federated States of Micronesia (FSM), Tuvalu and Solomon islands. The average number of fishing days was 271 with a range of 246~285. As restriction on fishing operation such as reduction of fishing days and higher fishing fee are expected to strengthen, the result of this study will be helpful to select more efficient fishing methods for purse seine fishery based on fishing conditions.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Investigation of Passing Ships in Inaccessible Areas Using Satellite-based Automatic Identification System (S-AIS) Data

  • Hong, Dan-Bee;Yang, Chan-Su;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.579-590
    • /
    • 2018
  • Shipping of North Korea is not yet publicly well documented. Taedong River, the most important sea route of North Korea, is selected as a model study area to show how effectively a remote place can be investigated through the application of satellite-based Automatic Identification System (S-AIS) for understanding shipping and tracks of vessels which passed the lock gate in the Taedong River and visited the nearby ports on its track. S-AIS data of the year 2014 were analyzed on the basis of various time periods, country of registry and category of ships. A total of 325 vessels were observed. The ships under the flags of North Korea, Cambodia and Sierra Leone were found to be dominant in frequencies which accounted for 43.08%, 16.00%, and 8.92%, respectively. Trajectories of the 325 ships in the Yellow Sea were also checked according to the flags. It is concluded that some ships under the flags of Cambodia, Sierra Leone, Mongolia, Panama and Kiribati are regarded as flags of convenience, and ships without flag and ship type codes also comprised a remarkable portion out of the total ships.

Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane (나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용)

  • Lee, Jin;Yun, Byeong Gweon;Han, Kyoung Gu;Lee, Seung Hoon;Kim, Cheol Hyeon;Kim, Chan;Lee, Yunho;Lee, Dongwhi;Lee, Seunghyeok;Kim, Kyoung-Woong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2021
  • Gravity-driven membrane (GDM) filtration system based on the nanofiber membrane was investigated. This system can be operated with little energy demand due to a gravitational pressure-driven filtration and biological fouling control strategy. Moreover, the optimal module configuration based on the high permeance of nanofiber membrane can provide a significantly high water productivity. In order to evaluate its applicability potential, the pilot-scale (3000-5000 L/day) systems with nanofiber membranes were operated in developing countries (Kiribati and Tuvalu). Our results showed that the 14-92 L/(m2×h) of the permeate flux was determined indicating a stabilized water productivity. In addition, the permeate water indicated a high removal rate (more than 99.99%) of turbidity and bacteria. Consequently, the system can provide a stabilized water production with safe permeate water quality during long-term operation. These findings exemplify an effective approach to decentralized drinking water treatment for developing countries.