• Title/Summary/Keyword: Kingpin moment

Search Result 2, Processing Time 0.018 seconds

Sensitivity Analysis of Steering Wheel Return-ability at Low Speed

  • Cho, HyeonSeok;Lee, ByungRim;Chang, SeHyun;Park, YoungDae;Kim, MinJun;Hwang, SangWoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.167-178
    • /
    • 2017
  • The steering wheel of a vehicle has a typical characteristic of automatically returning to its neutral state when the driver releases it. Steering returnability originated from the tire forces and kingpin moments. It is proportional to the reaction torque that is generated through the rack and column, which are dependent on suspension and steering geometry. It is also important to accurately predict and design it because steering returnability is related to steering performance. In this study, a detailed multibody dynamics model of a vehicle was designed by using ADAMS/Car and simulated for steering returnability. In addition, a tolerance analysis of the chassis system in terms of part dimension and properties has been performed in order to minimize the design parameters. The sensitivity of the selected design parameters was then analyzed via Design of Experiments(DOE). As a result, we were able to obtain the main parameters through a contribution analysis. It can be used to predict steering returnability and improve its performance, which is represented by the angle of restoration and laterality.

Rack Force Estimation Method using a Tire Mesh Model (TIRE MESH 모델을 활용한 랙추력 추정법 개발)

  • Kim, Minjun;Chang, Sehyun;Lee, Byungrim;Park, Youngdae;Cho, Hyunseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.