• Title/Summary/Keyword: Kinetic modeling

Search Result 262, Processing Time 0.026 seconds

Kinetic Modeling for Quality Prediction During Kimchi Fermentation

  • Chung, Hae-Kyung;Yeo, Kyung-Mok;Kim, Nyung-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1996
  • This study was conducted to develop the fermentation kinetic model for the prediction of acidity and pH changes in Kimchi as a function of fermentation temperatures. The fitness of the model was evaluated using traditional two-step method and an alternative non-linear regression method. The changes in acidity and pH during fermentation followed the pattern of the first order reaction of a two-step method. As the fermentation temperature increased from 4$^{\circ}C$ to 28, the reaction rates of acidity and pH were increased 8.4 and 7.6 times, respectively. The activation energies of acidity and pH were 16.125 and 16.003kcal/mole. The average activation energies of acidity and pH using a non-linear method were 16.006 by the first order and 15.813 kcal/mole by the zero order, respectively. The non-linear procedure had better fitting 개 experimental data of the acidity and pH than two-step method. The shelf-lives based on the time to reach the 1.0% of acidity were 33.1day at 4$^{\circ}C$ and 2.8 day 28$^{\circ}C$.

  • PDF

Modeling of Electrical Conductivity from $\sigma$tot vs. Po21/4 Plot in Wet Atmosphere for High-Temperature Proton-Conducting Oxides

  • Baek, Hyun-Deok
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.136-140
    • /
    • 1998
  • This work demonstrates a method for modeling of electrical conductivity in high-temperature proton-conducting oxides. Total conductivity was calculated assuming that it comprises partial conductivities contributed by protons, oxygen ions and electron holes. From the polt $\sigma_{tot}$ vs. $po_2\;{1/4}$ in wet atmosphere, thermodynamic and kinetic parameters were obtained representing transport properties such as concentration and mobility of the charge-carrying defects. The formulas for the calculation of partial conduction were derived based on the defect structure of HTPCs. Illustrative calculation were made for $SrCe_{0.95}Yb_{0.05}O_{2.975}$ system.

  • PDF

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

Dynamic Modeling of Transmission Line Galloping Vibrations (송전선 갤러핑 진동에 대한 동적 모델링 연구)

  • Kwak, Moon K.;Koo, Jae-Ryang;Bae, Yong-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.518-522
    • /
    • 2014
  • This paper is concerned with the dynamic modeling of transmission line undergoing galloping vibrations. To this end, the kinetic and potential energies of a uniform wire vibrating in space are derived. The equations of motion suitable for numerical simulations are derived using the assumed mode method and Lagrange equation. The resulting equations of motion are expressed in matrix form. To cope with bundled transmission line, the spacer was modelled by a spring element. As a numerical example, a two-wire transmission line combined by spacers was considered. Natural vibration characteristics show that the in-plane vibrations of the transmission line appeared in low frequency range, which may lead to galloping.

  • PDF

Quantitative Analysis of Biological Models under the Internet Environment (인터넷 환경을 통한 생물학적 모델의 정량적 분석)

  • Yun, Choa-Mun;Lee, Dong-Yup;Cho, A-Youn;Lee, Sang-Yup;Park, Sun-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.837-842
    • /
    • 2005
  • The computational modeling and simulation of complex biological systems are indispensable for new knowledge extraction from huge experimental data and ever growing vast amount of information in systems biology. Moreover, gathering and sharing of the existing information and newly-generated knowledge can speed up this research process. In this regard, several modeling projects have been undertaken for quantitatively analyzing the biological systems via the internet. They include Virtual Cell, JWS and OBIYagns. We also develop an integrated web-based environment, which facilitate investigation of dynamic behavior of cellular systems.

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

The energy dissipation mechanism of ship and fender system by vessel collision (선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘)

  • Hong Kwan-Young;Lee Gye-Hee;Ko Jae-Yong;Lee Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

Application of Chemical Ionization Mass Spectrometry to Heterogeneous Reactions of OH with Aerosols of Tropospheric Interest

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Studies performed on heterogeneous reactions of hydroxyl radicals (OH) in aerosol materials of tropospheric interest are presented, focusing on the chemical ionization mass spectrometric approach. Kinetic investigations of these reactions reduced deviation in the estimation of OH concentration in the troposphere by atmospheric modeling from field measurements. Recently, OH uptake was investigated under wet conditions to acquire kinetic information under more realistic conditions representative of the troposphere. The information on the mechanism and kinetics of OH uptake by tropospheric aerosol materials will contribute to the updating of atmospheric models, allowing a better understanding of the troposphere.

Application of the Modified Reactive SPH Method for Simulating Explosions

  • Sirotkin, Fedir V.;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.922-925
    • /
    • 2011
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian method widely used for the modeling fluid flows. Simulations of explosions require, besides the hydrodynamic equations, a realistic equation of state, an energy source term, and a set of chemical kinetic equations to follow the composition changes of the gas during the explosion. The performance of the hydrodynamic equations is investigated in the framework of the Sedov-Taylor blast-wave. The implementation of chemical kinetic equations and equation of state is studied with 1D detonation of TNT slab. Our results are compared to those from analytical and experimental studies.

  • PDF

Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle (Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF