• Title/Summary/Keyword: Kinetic energy distribution

Search Result 207, Processing Time 0.023 seconds

Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations (SUBOFF 모형 후방 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations (자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도)

  • Shin, Myung-Soo;Moon, Il-Sung;Nah, Young-In;Park, Jong-Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

Active Vibration Control of Cantilever Beams Using PZT Actuators (PZT Actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall (시강우를 고려한 천천유역의 토양침식 및 퇴적 평가)

  • Kim, Seongwon;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.5-17
    • /
    • 2020
  • In recent years, the frequency of heavy rainfall associated with high rainfall intensity has been continuously increasing due to the effects of climate change; and thus also causes an increase in watershed soil erosion. The existing estimation techniques, used for the prediction of soil erosion in Korea have limitations in predicting the: average soil erosion in watersheds, and the soil erosion associated with abnormal short-term rainfall events. Therefore, it is necessary to consider the characteristics of torrential rainfall, and utilize physics-based model to accurately determine the soil erosion characteristics of a watershed. In this study, the rainfall kinetic energy equation, in the form of power function, is proposed by applying the probability density function, to analyze the rainfall particle distribution. The distributed rainfall-erosion model, which utilizes the proposed rainfall kinetic energy equation, was utilized in this study to determine the soil erosion associated with various typhoon events that occurred at Cheoncheon watershed. As a result, the model efficiency parameters of the model for NSE and RMSE are 0.036 and 4.995 ppm, respectively. Therefore, the suggested soil erosion model, coupled with the proposed rainfall-energy estimation, shows accurate results in predicting soil erosion in a watershed due to short-term rainfall events.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.

Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch (주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향)

  • Lee Jai-Ho;Kim Beom-Jun;Cho Dae-Jin;Yoon Suck-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

The study for calculating the geometric average height of Deacon equation suitable to the domestic wind correction methodology. (국내풍속보정에 적합한 Deacon 방정식의 기하평균높이 산정방법에 대한 연구)

  • Cheang, Eui-Heang;Moon, Chae-Joo;Jeong, Moon-Seon;Jo, Kyu-Pan;Park, Gui-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • The main cause of global warming is carbon dioxide generated from the use of fossil fuels, and active research on the reduction of carbon is in progress to slow down the increasing global warming. Wind turbines generate electricity from kinetic energy of wind and are considered as representative for an energy source that helps to reduce carbon emission. Since the kinetic energy of wind is proportional to the cube of the wind speed, the intensity of wind affects wind farm construction validity the most. Therefore, to organize a wind farm, validity analysis should be conducted first through measurement of the wind resources. To facilitate the approval and permission and reduce installation cost, measuring sensors should be installed at locations below the actual wind turbine hub. Wind conditions change in shape with air density, and air density is most affected by the variable sterrain and surface type. So the magnitude of wind speed depends on the ground altitude. If wind conditions are measured at a location below the wind turbine hub, the wind speed has to be extrapolated to the hub height. This correction of wind speed according to height is done with the Deacon equation used in the statistical analysis of previously observed data. In this study, the optimal Deacon equation parameter was obtained through the analysis of the correction of the wind speed error with the Deacon equation based on the characteristics of terrain.

A Numerical Study on the Characteristics of High Resolution Wind Resource in Mountainous Areas Using Computational Fluid Dynamic Analysis (전산유동해석을 통한 산악 지역의 고해상도 풍력자원 특성에 관한 수치연구)

  • Lee, Soon-Hwan
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 2011
  • The purpose of this paper is to evaluate the wind energy resources with high spatial resolution in Sunghak and Guduck mountains in Busan Metropolitan area under the various atmospheric stabilities. The numerical model used in this research is A2C (Atmosphere to CFD), mainly applied to assess the regional scale and microscale meteorological phenformin. Wind under the strong atmospheric stability moves around mountain side smoothly due to the strong potential energy. On the other hand, the cavity region on the lee side of mountain tends to be created and expanded as the atmospheric stability decrease. Annually the average distribution of wind power density, turbulence kinetic energy, and vertical wind shear help to explain quantitatively that wind resource near the northern side of Guduck mountain top is more suitable to establish wind energy complex than that in any other regions in the target area.

Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface (마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석)

  • Lee Y.M.;Park J.S.;Seok C.S.;Lee C.W.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF