• Title/Summary/Keyword: Kinetic Parameters

Search Result 964, Processing Time 0.027 seconds

A Study on the Kinetics of Thermal Degradation of Polyethylene (폴리에틸렌 열분해의 속도론적 연구)

  • Kim, Myung Soo;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik;Yoo, Kyong Ok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.548-556
    • /
    • 1999
  • The thermal degradation of polyethylene has been studied using a nonisothermal thermogravimetric technique under a nitrogen atmosphere condition at several heating rates from 10 to $50^{\circ}C/min$. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative have been analyzed by a variety of analytical methods such as Kissinger, Freeman-Carroll, Flynn-Wall, Coats-Redfern, Chatterjee-Conrad, Friedman, Horowitz-Metzger, Ozawa and Denq methods. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because three are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis. From this work, it was found that the apparent activation energy of HDPE was larger than those of LDPE and LLDPE.

  • PDF

Kinetics for the Growth of Alcaligenes eutrophus and the Biosynthesis of Poly-${\beta}$-hydroxybutyrate (Alcaligenes eutrophus 균주의 성장과 Ploy-${\beta}$-hydroxybutyrate 생합성에 대한 속도론)

  • Lee, Yong-Woo;Yoo, Young-Je
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.186-192
    • /
    • 1991
  • It is very important to have a good kinetic model which considers the effects of both ammonium and glucose for the control and optimization of the poly-${\beta}$-hydroxybutyrate (PHB) fermentation. A kinetic model for the growth of Alcaligenes eutrophus and the biosynthesis of PHB under both ammonium and glucose limitation was proposed. Growth rate of residual biomass was expressed as a function of concentrations of residual biomass, glucose and ammonium having glucose inhibition. PHB production rate was expressed as a function of concentrations of residual biomass, glucose, ammonium and PHB content having ammonium and product inhibitions. Novel approaches were made to estimate the parameters in the model equations which considered two limiting substrates. Model parameters were evaluated by graphical and simplex methods. The proposed kinetic model fitted the data very well.

  • PDF

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2989-2994
    • /
    • 2013
  • The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Linearized Methods for Quantitative Analysis and Parametric Mapping of Brain PET (뇌 PET 영상 정량화 및 파라메터영상 구성을 위한 선형분석기법)

  • Kim, Su-Jin;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.78-84
    • /
    • 2007
  • Quantitative analysis of dynamic brain PET data using a tracer kinetic modeling has played important roles in the investigation of functional and molecular basis of various brain diseases. Parametric imaging of the kinetic parameters (voxel-wise representation of the estimated parameters) has several advantages over the conventional approaches using region of interest (ROI). Therefore, several strategies have been suggested to generate the parametric images with a minimal bias and variability in the parameter estimation. In this paper, we will review the several approaches for parametric imaging with linearized methods which include graphical analysis and mulilinear regression analysis.

Modeling and Dynamic Simulation for Biological Nutrient Removal in a Sequencing Batch Reactor(I) (연속 회분식 반응조에서 생물학적 영양염류 제거에 대한 모델링 및 동적 시뮬레이션(I))

  • Kim, Dong Han;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.42-55
    • /
    • 1999
  • A mathematical model for biological nutrient removal in a sequencing batch reactor process, which is based on the IAWQ Activated Sludge Model No. 2 with a few modifications, has been developed. Twenty water quality components and twenty three kinetic equations are incorporated in the model. The model is structured in the matrix form based on the law of mass conservation using stoichiometry and kinetic equations. Stoichiometric coefficients and kinetic parameters included in the model equations are chosen from the literature. A multistep predictor-corrector algorithm of variable step-size is adopted for solving the vector nonlinear ordinary differential equations. The simulation for experimental results is conducted to evaluate the validity of the model and to calibrate coefficients and parameters. The simulation using the model well represents the experimental results from laboratory. The mathematical model developed in this study may be utilized for the design and operation of a sequencing batch reactor process under the steady and unsteady-state at various environmental conditions.

  • PDF

The Cofactors Role on Chemical Mechanism of Recombinant Acetohydroxy Acid Synthase from Tobacco

  • Kim, Joung-Mok;Kim, Jung-Rim;Kim, Young-Tae;Choi, Jung-Do;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.721-725
    • /
    • 2004
  • Acetohydroxy acid synthase (AHAS) is one of several enzymes that require thiamine diphosphate and a divalent cation as essential cofactors. The active site contains several conserved ionizable groups and all of these appear to be important as judged by the fact that mutation diminishes or abolishes catalytic activity. Recently, we have shown [Yoon, M.-Y., Hwang, J.-H., Choi, M.-K., Baek, D.-K., Kim, J., Kim, Y.-T., Choi, J.-D. FEBS Letters 555 (2003), 185-191] that the activity is pH-dependent due to changes in $V_{max}$ and V/$K_m$. Data were consistent with a mechanism in which substrate was selectively catalyzed by the enzyme with an unprotonated base having a pK 6.48, and a protonated group having a pK of 8.25 for catalysis. Here, we have in detail studied the pH dependence of the kinetic parameters of the cofactors (ThDP, FAD, $Mg^{2+}$) in order to obtain information about the chemical mechanism in the active site. The $V_{max}$ of kinetic parameters for all cofactors was pH-dependent on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 9.5, 9.3 and 10.1, respectively. The V/$K_m$ of kinetic parameters for all cofactors was pH-dependent on the acidic and on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 6.2-6.4 on the acidic side and 9.0-9.1 on the basic side. The well-conserved histidine mutant (H392) did not affect the pH-dependence of the kinetic parameters. The data are discussed in terms of the acid-base chemical mechanism.

Symbolic-numeric Estimation of Parameters in Biochemical Models by Quantifier Elimination

  • Orii, Shigeo;Anai, Hirokazu;Horimoto, Katsuhisa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.272-277
    • /
    • 2005
  • We introduce a new approach to optimize the parameters in biological kinetic models by quantifier elimination (QE), in combination with numerical simulation methods. The optimization method was applied to a model for the inhibition kinetics of HIV proteinase with ten parameters and nine variables, and attained the goodness of fit to 300 points of observed data with the same magnitude as that obtained by the previous optimization methods, remarkably by using only one or two points of data. Furthermore, the utilization of QE demonstrated the feasibility of the present method for elucidating the behavior of the parameters in the analyzed model. The present symbolic-numeric method is therefore a powerful approach to reveal the fundamental mechanisms of kinetic models, in addition to being a computational engine.

  • PDF

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

CALORIMETRIC INVESTIGATION OF SULFUR VULCANIZATION OF NATURAL RUBBER

  • Paik, Nam-Chul;Choi, Sei-Young;Suh, Won-Dong
    • Elastomers and Composites
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 1986
  • The effects of several vulcanizing accelerators on the determination of kinetic parameters of natural rubber vulcanizate was studied by DSC. Kinetic parameters were determined by means of the calculation procedures of Borchardt-Daniels and Oscillating Disk Rheometer (ODR) cure curve analysis, using both DSC exothermal thermogram and ODR cure curve. In order to examine the credibility in the DSC method the same compound which was und for DSC method was used for the comparison with the results of ODR data. Upon this method, kinetic rate constant (k), and Arrehenius parameter (Ea, ko, n) have been determined for rubber compounds via a new method using DSC thermogram and ODR cure curve. In the comparison of DSC and ODR results, kinetic parameters has shown good agreements between two results. Consequently, from the present studies, it is shown that the DSC thermoanalytical method can provide an alternate new method of kinetic study of rubber vulcanization.

  • PDF

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.