• Title/Summary/Keyword: Kinematic controller

Search Result 121, Processing Time 0.039 seconds

Supervised Hybrid Control Architecture for Navigation of a Personal Robot

  • Shin, Hyun-Jong;Im, Chang-Jun;Kim, Jin-Oh;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1178-1183
    • /
    • 2003
  • As personal robots coexist with a person with a role to help a person, while adapting various human life and environment, the personal robots have to accommodate frequently-changing or different-from-home-to-home environment. In addition, personal robots may have many kinds of different Kinematic configurations depending on the capabilities. Some may have a mobile base and others may have arms and a head. The motivation of this study arises from this not-well-defined home environment and varying Kinematic configuration. So the goal of this study is to develop a general control architecture for personal robots. There exist three major architectures; deliberative, reactive and hybrid. We found that these are applicable only for the defined environment with a fixed Kinematic configuration. Neither could accommodate the above two requirements. For the general solution, we propose a Supervised Hybrid Architecture (SHA), in which we use double layers of deliberative and reactive controls, distributed control with a modular design of Kinematic configurations, and real-time Linux OS. Deliberative and reactive actions interact through a corresponding arbitrator. These arbitrators help a robot to choose an appropriate architecture depending on the current situation to successfully perform a given task. The distributed control modules communicate through IEEE 1394 for the easy expandability. With a personal robot platform with a mobile base, two arms, a head and a pan-tilt stereo eye system, we tested the developed SHA for static as well as dynamic environments. For this application, we developed decision-making rules for selecting appropriate control methods for several situations of navigation task. Examples are shown to show the effectiveness.

  • PDF

Formation Control of Mobile Robots using PID Controller with Neural Networks (신경회로망 PID 제어기를 이용한 이동로봇의 군집제어)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1811-1817
    • /
    • 2014
  • In this paper, a PID controller with interpolated gains by use of neural networks is proposed for the formation control problem that following robots track a leading robot with constant distances and angles when there are changes in the mass of the following robot. The whole control system is composed of a kinematic controller and a dynamic controller considering the robot dynamics. The dynamic controller is the PID controller with varying gains, and the proper gains are obtained for some representative masses of the follower robot by the genetic algorithm. Neural networks is trained using the genetic algorithm with the gain data obtained in the previous step. The trained neural network determines optimal PID gains for a random mass of following robot. Simulation studies show that for arbitrary masses of the tracking robot, the PID controller with interpolated gains by the trained neural network has better tracking performance than that of the PID controller with fixed gains.

Design of Multi-Dynamic Neural Network Controller for Improving Transient Performance (과도상태 성능 개선을 위한 다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.344-348
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.332-336
    • /
    • 2010
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of Multi-Dynamic Neuro-Fuzzy Controller for Dynamic Systems Control (동적시스템 제어를 위한 다단동적 뉴로-퍼지 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.150-153
    • /
    • 2007
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

비선형 다변수 발사대의 LQG/LTR 제어기 설계

  • 김종식;한성익;김용목;남세규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.133-142
    • /
    • 1992
  • A kineamatic nonlinear multivariable laundher is modeled of which the azimoth and elevation axes are drived simultaneously and SISO and MIMO LQG/LTR controllers are designed and evaluated for this system. Also, the suitable command input function is suggested for the desired command following performance and the LQG/LTR control system with disturbances and load variation is evaluated for the entire operating range by computer simulation. It is found that the linear SISO LQG/LTR controller can be used for the kinematic nonlinear multivariable launder in the entire operating range and is effective for disturbance rejection and load variation.

Modeling and Path Following for Mobile Robot (이동 로봇의 모델링 및 경로 추종)

  • 임철우;김영구;강진식
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.29-32
    • /
    • 2002
  • In this paper the wheeled mobile robot is studied. The kinematic and dynamic modeling of the robot is presented via LPD(Linear Parameter Dependent) framework. A path-planning algorithm which is optimized in the sense of robot mobility and distance is presented. And by using PI controller we show that the presented algorithm and model is work very well in the computer simulation and experiment.

  • PDF

Design of an Adaptive Output Feedback Controller for Robot Manipulators Using DNP (DNP을 이용한 로봇 매니퓰레이터의 출력 궤환 적응제어기 설계)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.191-196
    • /
    • 2008
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Design of Multi-Dynamic Neural Network Controller (다단동적 신경망 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.454-457
    • /
    • 2009
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

Design of Multi-Dynamic Neural Network Controller using Nonlinear Control Systems (비선형 제어 시스템을 이용한 다단동적 신경망 제어기 설계)

  • Rho, Yong-Gi;Kim, Won-Jung;Cho, Hynu-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.122-128
    • /
    • 2006
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF