• Title/Summary/Keyword: Kinematic GPS

Search Result 179, Processing Time 0.026 seconds

A Development of Displacement Monitoring System by GPS (GPS에 의한 변위 모니터링시스템 개발)

  • 최병길;문일용;이수영;김성표
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2001.10a
    • /
    • pp.71-82
    • /
    • 2001
  • 인공위성을 이용한 범 지구 위치결정시스템인 GPS(Global Positioning System)는 수 밀리의 정밀도로 정적, 동적 위치측정이 가능한 시스템으로 교량, 건축물, 댐 등 각종 구조물의 미세한 변위를 측정하는데 이용되고 있다. 최근 국내에서도 대형구조물의 변위 측정에 GPS를 활용하려는 시도가 부분적으로 이루어지고 있으나 초보적인 단계이며 체계적인 연구가 이루어지지 못하고 있는 실정이다. 본 연구에서는 RTK(Real Time Kinematic) GPS로 구조물의 변위를 실시간 측정하고 모니터링 할 수 있는 시스템을 개발하였다. 먼저 예비실험으로 반송파의 차분에 의해서 증폭되는 수신기의 측정잡음 오차, 다중경로 오차, GDOP(Geometric Dilution of Precision)가 RTK GPS의 위치정확도에 미치는 영향을 분석하였다. 그리고, RTK GPS를 이용하여 마포대교를 관측한 결과, 수 센티미터 정도 발생하는 구조물의 변위를 3차원으로 정밀 관측할 수 있었으며, 본 연구에서 개발한 모니터링프로그램을 이용하여 구조물의 거동을 실시간으로 모니터링 할 수 있었다.

  • PDF

Performance Analysis of Local Network PPP-RTK using GPS Measurements in Korea

  • Jeon, TaeHyeong;Park, Sang Hyun;Park, Sul Gee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.263-268
    • /
    • 2022
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) is a high accuracy positioning method that combines RTK and PPP to overcome the limitations on service coverage of RTK and convergence time of PPP. PPP-RTK provides correction data in the form of State Space Representation (SSR), unlike RTK, which provides measurement-based Observation Space Representation (OSR). Due to this, PPP-RTK has an advantage that it can transmit less data than RTK. So, recently, several techniques for PPP-RTK have been proposed. However, in order to utilize PPP-RTK techniques, performance analysis of these in a real environment is essential. In this paper, we implement the local network PPP-RTK and analyze the positioning performance according to the distance within 100 km from the reference station in Korea. As results of experiment, the horizontal and vertical 95% errors of local network PPP-RTK were 6.25 cm and 5.86 cm or less, respectively.

Accuracy Enhancement using Network Based GPS Carrier Phase Differential Positioning (네트워크 기반의 GPS 반송파 상대측위 정확도 향상)

  • Lee, Yong-Wook;Bae, Kyoung-Ho
    • Spatial Information Research
    • /
    • v.15 no.2
    • /
    • pp.111-121
    • /
    • 2007
  • The GPS positioning offer 3D position using code and carrier phase measurements, but the user can obtain the precise accuracy positioning using carrier phase in Real Time Kinematic(RTK). The main problem, which RTK have to overcome, is the necessary to have a reference station(RS) when using RTK should be generally no more than 10km on average, which is significantly different from DGPS, where distances to RS can exceed several hundred kilometers. The accuracy of today's RTK is limited by the distance dependent errors from orbit, ionosphere and troposphere as well as station dependent influences like multipath and antenna phase center variations. For these reasons, the author proposes Network based GPS Carrier Phase Differential Positioning using Multiple RS which is detached from user receiver about 30km. An important part of the proposed system is algorithm and software development, named DAUNet. The main process is corrections computation, corrections interpolation and searching for the integer ambiguity. Corrections computation of satellite by satellite and epoch by epoch at each reference station are calculated by a Functional model and Stochastic model based on a linear combination algorithm and corrections interpolation at user receiver are used by area correction parameters. As results, the users can obtain the cm-level positioning.

  • PDF

TRIFLE DIFFERENCE APPROACH TO LOW EARTH ORBITER PRECISION ORBIT DETERMINATION

  • Kwon, Jay-Hyoun;Grejner brzezinska, Dorota-A.;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • A precise kinematic orbit determination (P-KOD) procedure for Low Earth Orbiter(LEO) using the GPS ion-free triple differenced carrier phases is presented. Because the triple differenced observables provide only relative information, the first epoch's positions of the orbit should be held fixed. Then, both forward and backward filtering was executed to mitigate the effect of biases of the first epoch's position. p-KOD utilizes the precise GPS orbits and ground stations data from International GPS Service (IGS) so that the only unknown parameters to be solved are positions of the satellite at each epoch. Currently, the 3-D accuracy off-KOD applied to CHAMP (CHAllenging Min-isatellite Payload) shows better than 35 cm compared to the published rapid scientific orbit (RSO) solution from GFZ (GeoForschungsZentrum Potsdam). The data screening for cycle slips is a particularly challenging procedure for LEO, which moves very fast in the middle of the ionospheric layer. It was found that data screening using SNR (signal to noise ratio) generates best results based on the residual analysis using RSO. It is expected that much better accuracy are achievable with refined prescreening procedure and optimized geometry of the satellites and ground stations.

Study in the Applicability of KLIS Data for the Cadastral Re-Surveying in the Forest Area (임야지역 지적재조사를 위한 KLIS 데이터의 활용 가능성 연구)

  • Choi, Han-Young;Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.3 s.37
    • /
    • pp.23-30
    • /
    • 2006
  • The case of a forest area has tome limitations of adopting a ground surveying like as TS (Total Station) and RTK-GPS (Real Time Kinematic-GPS) due to the specificity of the forest area. Therefore, the new method, is different from exist the cadastral re-surveying method in a metro area and a cropland, is applicably considered in the forest area. In this paper, we suggest the applicability of the digital cadastral map of forest which is used at KLIS. According to the result of study, the most important area error value for adopted in the cadastral re-surveying is almost contained the error tolerance. Therefore, KLIS data, if it is related with the actual reference data for adjusting the location boundary, is suitable to be adopted in the cadastral re-surveying.

  • PDF

A Study on the Analysis of Risk Factor on Highway Alignment Using RTK GPS (RTK GPS를 이용한 도로선형 위험요소 분석에 관한 연구)

  • Jang, Ho-Sik;Seo, Dong-Ju;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.67-76
    • /
    • 2002
  • At a recent, with an increase of traffic demand and a spread of automobile culture, the safety, convenience and speed of highway is required. On this study, using the real time kinematic GPS, observation value at a center line of ready-built road is obtained and then design specification of highway, IP, IA and R are obtained by least square method. Using those IP, IA and R, we analysed the risk factor of highway alignment by the standard for structure and facility of the road. With using RTK GPS, we could analyse dangerous element of highway alignment rapidly and cope with dangerous area of the existing road. It is also proved to apply availably whether we determine alignment improvement is needed or not or analyze source of accident related with alignment in the region having a high traffic accident rate.

  • PDF

Evaluation of the kinematic positioning accuracy of the navigation terminal with terrestrial DMB-based DGPS service (지상파 DMB 기반 DGPS 서비스를 이용한 내비게이션 단말의 이동측위 정확도 평가)

  • Park, Hwang-Hun;Jo, Hak-Hyeon;Kim, Ji-Hye;Kim, Hye-In
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.348-350
    • /
    • 2012
  • 현재 국토해양부에서 전국을 대상으로 실시하고 있는 지상파 DMB 기반 DGPS 실험방송의 정확도를 PC기반 수신 시스템과 내비게이션 단말을 이용하여 평가하였다. 정확도 평가를 위한 지역은 인천 송도 신도시와 서울 반포지역으로, 두 지역에 측위 경로를 선정하여 이동측위를 실시하였으며 각각 GPS 단독측위와 DMB 기반 DGPS를 이용한 측위 결과를 비교하였다. 먼저 위치보정정보의 송수신을 위하여 개발된 PC 기반 수신 시스템을 이용한 정확도 평가 결과는 송도에서 GPS 단독측위의 경우 2.5m의 수평오차가 발생하였고, DMB 기반 DGPS는 1.5m의 수평오차가 발생하였다. 또한 반포지역에서는 GPS 단독에서 2.0m, DMB기반 DGPS에서는 0.8m 수평오차가 발생하였다. 앞서 PC 기반 수신 시스템을 통해 검증 된 알고리즘을 구현한 DMB 기반 DGPS 샘플 내비게이션 단말을 이용하여 동일한 방법으로 정확도를 평가하였고 본 논문에서 그 결과를 소개한다.

  • PDF

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

DATUM PROBLEM OF NETWORK-BASED RTK-GPS POSITIONING IN TAIWAN

  • Yeh, Ta-Kang;Hu, Yu-Sheng;Chang, Ming-Han;Lee, Zu-Yu;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.90-94
    • /
    • 2007
  • The conventional single-reference station positioning is affected by systematic errors such as ionospheric and tropospheric delay, so that the rover must be located within 10 km from the reference station in order to acquire centimeter-level accuracy. The medium-range real-time kinematic has been proven feasible and can be used for high precision applications. However, the longer of the baseline, the more of the time for resolving the integral ambiguity is required. This is due to the fact that systematic errors can not be eliminated effectively by double-differencing. Recently, network approaches have been proposed to overcome the limitation of the single-reference station positioning. The real-time systematic error modeling can be achieved with the use of GPS network. For expanding the effective range and decreasing the density of the reference stations, Land Survey Bureau, Ministry of the Interior in Taiwan set up a national GPS network. In order to obtain the high precision positioning and provide the multi-goals services, a GPS network including 66 stations already been constructed in Taiwan. The users can download the corrections from the data center via the wireless internet and obtain the centimeter-level accuracy positioning. The service is very useful for surveyors and the high precision coordinates can be obtained real time.

  • PDF

Combination of GPS, Echo Sounder and GIS for Constructing 3D Riverbed Surveying System (3차원 하상측량시스템 구현을 위한 GPS와 음향측심기 및 GIS의 조합)

  • Lee, Jin-Duk;Kim, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.232-238
    • /
    • 2007
  • In this research, we constructed a 3D riverbed surveying system that is able to acquire the topographical information of a riverbed in real-time. The system consists of a RTK-GPS receiver and a echo sounder for collecting simultaneously the position and the water depth information of riverbed. A program for data composition and transformation was designed to generate the 3D coordinates by combining data of a GPS receiver and a echo sounder and made GIS database construction easy. We extracted TIN, digital elevation model and cross sectional maps of the riverbed by using GIS software from 3D data constructed through test surveying. It was shown that the accuracy of the result was RMS error of 0.069m when compared with the existing methods which use a total station and staffs. It is expected that the 3D riverbed surveying system wiil be able to be utilized to various surveying for water resources management in rivers, sea, dams, storing reservoirs and so forth.