• Title/Summary/Keyword: Kinematic Data

Search Result 711, Processing Time 0.031 seconds

Development of EMG-Triggered Functional Electrical Stimulation Device for Upper Extremity Bilateral Movement Training in Stroke Patients: Feasibility and Pilot study

  • Song, Changho;Seo, Dong-kwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.374-378
    • /
    • 2021
  • Objective: Bilateral movement training is an effective method for upper extremity rehabilitation of stroke. An approach to induce bilateral movement through functional electrical stimulation is attempted. The purpose of this study is to develop an EMG-triggered functional electrical stimulation device for upper extremity bilateral movement training in stroke patients and test its feasibility. Design: Feasibility and Pilot study design. Methods: We assessed muscle activation and kinematic data of the affected and unaffected upper extremities of a stroke patient during wrist flexion and extension with and without the device. Wireless EMG was used to evaluate muscle activity, and 12 3D infrared cameras were used to evaluate kinematic data. Results: We developed an EMG-triggered functional electrical stimulation device to enable bilateral arm training in stroke patients. A system for controlling functional electrical stimulation with signals received through a 2-channel EMG sensor was developed. The device consists of an EMG sensing unit, a functional electrical stimulation unit, and a control unit. There was asymmetry of movement between the two sides during wrist flexion and extension. With the device, the asymmetry was lowest at 60% of the threshold of the unaffected side. Conclusions: In this study, we developed an EMG-triggered FES device, and the pilot study result showed that the device reduces asymmetry.

Characteristics of Pelvic Ranges According to Artificial Leg Length Discrepancy During Gait: Three-Dimensional Analysis in Healthy Individuals (보행 중 인위적 다리길이 차이에 따른 3차원적 골반 가동범위의 특성)

  • Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Purpose : The purpose of this study was to analyze the dynamic range of motion (ROM) of pelvic and translation of center of mass (COM) when wearing different shoe insole lifts according to leg length discrepancy (LLD) during free speed gait. Methods : Thirty-five healthy adults were participated in this study. Kinematic data were collected using a Vicon motion capture system. Reflective and cluster 40 markers attached to participants lower extremities and were asked to walk in a 6 m gait way under three different shoe lift conditions (without any insole, 1 cm insole, and 2 cm insole). The pelvic ROM and COM translation in three planes were sorted using a Nexus software, and a Visual3D motion analysis software was used to coordinate all kinematic data. Results : There were significantly increased maximal pelvic elevation and total pelvic range in coronal plane when wearing a standard shoe with 2 cm insole lift during gait (p<.05). When wearing a standard shoe with 2 cm insole lift, the total range of the pelvic segment were significantly different in all three motion planes (p<.05). Conclusion : Although LLD of less than 2 cm develops abnormal movement pattern of the pelvis and may cause of musculoskeletal diseases such as low back pain, hip and knee joint osteoarthritis, therefore intensive various physical therapy interventions for LLD are needed.

A Study on GPS surveying using Epoch-By-Epoch algorithm (Epoch-By-Epoch 알고리즘을 활용한 GPS 측량 실험)

  • 최윤수;고준환;이기도;박지혜
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.57-57
    • /
    • 2004
  • This study analyzed and compared the results of baseline processing using Epoch-By-Epoch algorithm which is not required initialization compared to conventional kinematic surveying which is required initialization There are rarely differences between 24 hours data of 30 seconds interval and 90 seconds of 30 seconds when it is processed with 26km baseline. This helps with economic surveying using data of GPS CORS

  • PDF

A Method for Creating Natural Animation by Interaction with Operators

  • Lee, Ji-Hong;Kim, Sung-Su
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.3-117
    • /
    • 2001
  • This paper deals with a method for creating animation by interaction with animation operators. Operators are able to edit/transform any given motion data to more natural animations by the motion editing method proposed in this paper. The proposed technique is especially useful when some paris of character structure are changed. The system to be proposed is designed to fully utilize the experience of animation operators as well as to accomodate semi-automation process with spline interpolation. An example for retargeting a given motion data to a new character of dramatically changed kinematic structure.

  • PDF

A Study on the Effects of the Flexibilities of Suspension System of a Vehicle for Handling Performance (자동차 현가장치의 강성이 조종안정성에 미치는 영향에 관한 연구)

  • 송성재;문홍기;조병관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.186-197
    • /
    • 1998
  • An analysis of handling performance including the compliance effects is performed. Using the primitive design data of suspension systems, a kinematic model and the three kinds of compliance models are developed. The wheel alignments curves are obtained with the multibody dynamic analysis program ADAMS. The compliance effects of each model are discussed. Since the proposed analysis only requires the raw design data, the better prediction of wheel behaviors is possible in suspension design stage.

  • PDF

Kinematic Characteristics Based on Proficiency In Geoduepyeopchagi in Taekwondo Poomsae Koryo

  • So, Jae Moo;Kang, Sung-Sun;Hong, AhReum;Jung, Jong Min;Kim, Jai Jeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.343-351
    • /
    • 2016
  • Objective: The purpose of this study was to help improve game performance and provide preliminary data to enhance the efficiency of the kick and stability of the support foot by comparing the kinematic characteristics of the repeated side kick (geodeupyeopchagi) in poomsaeKoryo between expert and non-expert groups. Method: The subjects were divided into 2 groups according to proficiency in Taekwondo, an expert group and a non-expert group (n = 7 in each group), to observe the repeated side-kick technique. Four video cameras were set at a speed of 60 frames/sec and exposure time of 1/500 sec to measure the kinematic factors of the 2 groups. The Kwon3D XPprogramas used to collect and analyze three-dimensional spatial coordinates. Ground reaction force data were obtained through a force plate with a 1.200-Hz frequency. An independent samplesttest was performed, and statistical significance was defined as .05. The SPSS 18.0 software was used to calculate the mean and standard deviation of the kinematic factors and to identify the difference between the experts and non-experts. Results: The angular displacement of the hip joint in both the expert and non-expert groups showed statistical significance on E1 and E4 of the left support foot and E5 of the right foot (p<.05). The angle displacement of the knee joint in both groups showed statistical significance on E4 of the left support foot, and E1 and E2 of the right foot (p<.05). The angular velocity of the lower leg in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 and E6 of the right foot (p<.05). The angular velocity of the foot in both groups showed no statistical significance on the left support foot but showed statistical significance on E2 of the right foot (p<.05). The vertical ground reaction force in both groups showed statistical significance on E2 (p<.05). The center of pressure in all directions in both groups showed statistical significance (p<.5). Conclusion: While performing the repeated side kick (geodeupyeopchagi), the experts maintainedconsistency and stability of the angle of the support leg while the kick foot moved high and fast. On the other hand, the angle of the support foot of non-experts appeared inconsistent, and the kick foot was raised, relying on the support leg, resulting in unstable and inaccurate movement.

Construction of Management System of Road Position Information Using GPS Surveying Data

  • Kim, Jin-Soo;Roh, Tae-Ho;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • This study aims to construct a management system of road position information as part of the build-up to a maintenance and management system of highways. First, information on the positions of the roads were obtained by a real-time kinematic satellite surveying, and then the degree of accuracy was analyzed in comparison with the data of the existing design drawings. The linear coordinates of road center line obtained by using RTK GPS showed about 7.6-13.2cm errors in X and Y directions in the case of the national road No.2 section, and about 8.4-9.2cm errors in the case of local road No.1045 section. These errors were within the tolerance scope regulated by the TS survey, and could be practically used. In the case of vertical alignment, there were about 6.2cm errors in the Z direction in local road No.1045 section. Aerial photographs are normally used in producing numerical maps, and it can be practically used because the tolerance scope of the elevation control point is l0cm when the scale of aerial photographs is 1/1000. The management system of road position information, utilizing Object-Oriented Programming(OOP), was built having the data acquired in this way as the attribute data. The system developed in this way can enable us to spot the positions of road facilities, the target of management with ease, to easily update the data in case of changes in the positions of roads and road facilities, and to manage the positions of roads and road facilities more effectively.

  • PDF

Relationship between Center of Pressure and Local Stability of the Lower Joints during Walking in the Elderly Women

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • Objective: The purpose of this study was to determine the relationship between center of pressure (CoP) and local stability of the lower joints, which was calculated based on approximate entropy (ApEn) during walking in elderly women. Method: Eighteen elderly women were recruited (age: $66.4{\pm}1.2yrs$; mass: $55.4{\pm}8.3kg$; height: $1.56{\pm}0.04m$) for this study. Before collecting data, reflective marker triads composed of 3 non-collinear spheres were attached to the lateral surface of the thigh and shank near the mid-segment to measure motion of the thigh and shank segments. To measure foot motion, reflective markers were placed on the shoe at the heel, head of the fifth metatarsal, and lateral malleolus, and were also placed on the right anterior-superior iliac spine, left anterior-superior iliac spine, and sacrum to observe pelvic motion. During treadmill walking, kinematic data were recorded using 6 infrared cameras (Oqus 300, Qualisys, Sweden) with a 100 Hz sampling frequency and kinetic data were collected from a treadmill (Instrumented Treadmill, Bertec, USA) for 20 strides. From kinematic data, 3D angles of the lower extremity's joint were calculated using Cardan technique and then ApEn were computed for their angles to evaluate local stability. Range of CoP was determined from the kinetic data. Pearson product-moment and Spearman rank correlation coefficient were applied to find relationship between CoP and ApEn. The level of significance was determined at p<.05. Results: There was a negative linear correlation between CoP and ApEn of hip joint adduction-abduction motion (p<.05), but ApEn of other joint motion did not affect the CoP. Conclusion: It was conjectured that ApEn, local stability index, for adduction/abduction of the hip joint during walking could be useful as a fall predictor.

Implementation and Performance Analysis of Real-Time DGPS & RTK Error Correction Data Transmission System for Long-Distance in Mobile Environments (모바일 환경에서 DGPS 및 RTK 보정 데이터 실시간 장거리 전송 시스템의 구현 및 성능 분석)

  • 조익성;임재홍
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.345-358
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(Real time Kinematic) are in one of today's most widely used surveying techniques. However surveying with these techniques is restricted by the distance between reference and rover station, and it is difficult to process data in realtime by their own organizational limitation in precise measurement of positioning. To meet these new demands, in this paper, new DGPS and RTK correction data services through the Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, a DGPS and RTK error correction data transmission system is implemented for long-distance using the Internet and PSTN which allows a mobile user at which the rover receiver is located to receive the correction data from the reference in realtime, and analyzed and compared with DGPS and RTK performances by experiments through the Internet and PSTN for the distance and the time.

Evaluation of Parameter Characteristics of the Storage Function Model Using the Kinematic Wave Model (운동파모형을 이용한 저류함수법 매개변수의 특성 평가)

  • Choi, Jong-Nam;Ahn, Won-Shik;Kim, Hung-Soo;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.95-104
    • /
    • 2010
  • The storage function model is one of the most commonly used models for flood forecasting and warning system in Korea. This paper studies the physical significance of the storage function model by comparing it with kinematic wave model. The results showed universal applicability of the storage function model to Korean basins. Through a comparison of the basic equations for the models, the storage function model parameters, K, P and $T_l$, are shown to be related with the kinematic wave model parameters, k and p. The analysis showed that P and p are identical and K and $T_l$ can be related to k, basin area, and coefficients of Hack's law. To apply the storage function model throughout the southern part of Korean peninsular, regional parameter relationships for K and $T_l$ were developed for watershed area using data from 17 watersheds and 101 flood events. These relationships combine the kinematic wave parameters with topographic information using Hack's Law.