• Title/Summary/Keyword: Kinematic Constraint

Search Result 112, Processing Time 0.028 seconds

Study on the Identifiable Parameters and Optimum Postures for Calibrating Parallel Manipulators (병렬구조 로봇의 보정을 위한 보정 가능 변수 판별과 최적 자세 선정에 관한 연구)

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1476-1481
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

Motion Planning of Manipulators Using Kinematic Redundancy and ZMP Constraint Condition (기구학적 여유도와 ZMP 구속 조건을 이용한 매니퓰레이터의 동작 계획)

  • Choi, Jae-Yeon;Yoon, Hyun-Soo;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.308-316
    • /
    • 2011
  • This work deals with development of effective redundancy resolution algorithms for the motion control of manipulator. Differently from the typical kinematically redundant robots that are attached to the fixed ground, the ZMP condition should be taken into account in the manipulator motion in order to guarantee the system stability. In this paper, a new motion planning algorithm for redundant manipulator not fixed to the ground is introduced. A sequential redundancy resolution algorithm is proposed, which ensures the ZMP (Zero Moment Point) stability, the planned operational motion, and additional sub-criteria such as joint limit index. A geometric constraint equation derived by reshaping the existing ZMP equation enables one to employ the sequential redundancy algorithm. The feasibility of the proposed algorithm is verified by simulating a redundant manipulator model.

Nonlinear Dynamic Analysis of Deep Water Riser by the Utilization on the Kinematic Constraint Condition (운동학적 제약조건을 이용한 심해저 라이저의 비선형 동적해석)

  • 홍남식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.495-508
    • /
    • 1999
  • 변형된 라이저의 단위 접선벡터상의 운동학적 제약조건을 적용하여 심해저 라이저의 비선형 동적해석을 행한다. 이 조건의 적용으로 자유도수를 감소시킬 수 있으며 심한 비선형성으로 인한 해의 발산 가능성을 제거할 수 있다. 라이저의 거대변형으로 인한 기하학적 비선형성과 비선형 경계조건이 고려된다. 또한, 비선형성이 포함되는 수동학적 하중이 조류와 파랑에 의해 발생하여 내부에 정상류가 흐르는 라이저관의 외벽에 작용하게 된다. 이 외에도라이저 자체의 축방향 변형조건을 고려한다. Galerkin의 유한요소 근사화와 시간증분자를 적용하여 유한요소에 대한 평형 메트릭스 방정식을 유도하고, 수치해석을 위한 알고리즘을 제안하며 API 보고서의 결과와 비교함으로써 제안된 모델이 검증된다. 또한, 기하학적 비선형성으로 인한 영향을 조사하였다.

  • PDF

Kinematic Design Sensitivity Analysis of Suspension System Using a Symbolic Computation Method (기호계산 기법을 이용한 현가장치의 기구학적 민감도 해석)

  • 송성재;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.247-259
    • /
    • 1996
  • Kinematic design sensitivity analysis for vehicle in suspension systems design is performed. Suspension systems are modeled using composite joins to reduce the number of the constraint equations. This allows a semi-analytical approach that is computerized symbolic manipulation before numerical computations and that may compensate for their drawbacks. All the constraint equations including design variables are derived in symbolic equations for sensitivity analysis. By directly differentiating the equations with respect to design variables, sensitivity equations are obtained. Since the proposed method only requires the hard point data, sensitivity analysis is possible in suspension design stage.

  • PDF

Approximate Synthesis of 5-SS Multi Link Suspension Systems for Steering Motion (조향 운동을 고려한 5-SS 멀티링크 현가장치의 근사 합성)

  • Kim, Seon-Pyeong;Sim, Jae-Gyeong;An, Byeong-Ui;Lee, Eon-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • This paper presents an approximate synthesis of 5-SS multi link suspension for 2 D.O.F motions. In the proposed synthesis method, alteration curves of camber, toe, kingpin and caster angles are optimized during the bump rebound and the steering motions. And joint positions can be located within desired boundari es. Especially, steering motions are considered for control of kingpin offset and caster trail. Prescribed motions contain both wheel center positions and imaginary kingpin axes in the multi link type suspension. Constraint equations are formulated with di splacement matrix and velocity matrix using instantaneous screw axis.

Implementation of A Spatial 3-DOF Haptic Mechanism (공간형 3 자유도 Haptic 메커니즘의 구현)

  • 이재훈;이수강;이병주;이석희;이정헌;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.312-316
    • /
    • 2004
  • In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.

  • PDF

Anti Roll Bar Force Computation Algorithm for Real Time Multibody Vehicle Dynamics (실시간 차량 동역학 해석을 위한 안티 롤 바 힘 계산 알고리듬)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Ha, Kyoung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • Anti roll bar model for real time multibody vehicle dynamics model has been proposed using kinematic constraint. Anti roll bar have been modeled by kinematic relationship, and mass properties are neglected. Relative angle of torsion bar spring is computed by constraint about drop-link using Newton-Raphson iteration, and then the torque of torsion bar spring can be computed with the angle and torsion spring stiffness. Finally anti roll bar force acting on both knuckle can be calculated. To validate the proposed method, half car simulations of McPherson strut suspension and full car simulations are also carried out comparing with the ADAMS vehicle model with anti roll bar. CPU times are also measured to see the real-time capabilities of the proposed method.

Tracking a constant speed maneuvering target using IMM method

  • Lee, Jong-hyuk;Kim, Kyung-youn;Ko, Han-seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.484-487
    • /
    • 1995
  • An interacting multiple model (IMM) approach which merges two hypotheses for the situations of constant speed and constant acceleration model is considered for the tracking of maneuvering target. The inflexibility of uncertainty which lies in the kinematic constraint (KC) represented by pseudomeasurement noise variance is compensated by the mixing of estimates from two model Kalman tracker: one with KC and one without KC. The numerically simulated tracking performance is compared for the "great circular like turning" trajectory maneuver by the single model tracker with constant speed KC and two model tracker which is developed in this paper.his paper.

  • PDF

A study on the analysis and design for VTR deck mechanisms using CAE (CAE를 이용한 VTR Deck기구의 해석 및 설계)

  • 박태원;범진환;한형석;김명규;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.223-235
    • /
    • 1993
  • VTR(Video Tape Recorder) has very complicated mechanisms composed of various cams, links, gears and so on. To satisfy kinematic requirements of VTR components, various geometric constraints between rigid bodies and a translational cam design program are developed. Mechanisms of VTR are divided into functional groups like a control part, a loading part and a tape guide part. Each group is modeled for kinematic and dynamic analysis. Finally, all groups are combined together for a complete VTR model and loads required for each function of VTR controls are studied. Detailed description of developed programs are presented and result are discussed.

Design Optimization for Kinematic Characteristics of Automotive Suspension considering Constraints (구속조건을 고려한 자동차 현가장치 기구특성의 최적설계)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.306-311
    • /
    • 2017
  • This paper deals with the design optimization of the kinematic characteristics of an automotive suspension system. The kinematic characteristics of the suspension determine the attitude of the wheels, such as the toe and camber, which not only relates to tire wear during driving, but also greatly affects the control of the vehicle and its stability, which corresponds to the motion performance of the vehicle. Therefore, it is very important to determine the characteristics of the suspension mechanism at the initial stage of the design. In this study, a displacement analysis is performed to determine the kinematic properties of the suspension for the McPherson strut suspension. For this purpose, a set of constraint equations for the joints constituting the suspension mechanism was established and a program was developed to solve them. We also used ADS, a design optimization program, to obtain the desired kinematic characteristics of the suspension. As the design variables for optimization, we used the coordinates of the hard points, which are the points of attachment of the suspension to the vehicle body, and are defined as the summation of the toe-in for the up and down movement of the wheel as the objective function. As the constraint functions, the maximum camber angle and minimum roll center height, which are design requirements, are considered. As a result of this study, it was possible to determine the optimal locations of the hard points that satisfy both constraint functions and minimize the change of the toe-in.