• 제목/요약/키워드: Kinase activation

검색결과 1,367건 처리시간 0.024초

Sphigosine-1-Phosphate-Induced ERK Activation Protects Human Melanocytes from UVB-Induced Apoptosis

  • Kim, Dong-Seok;Kim, Sook-Young;Lee, Jai-Eun;Kwon, Sun-Bang;Joo, Young-Hyun;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권9호
    • /
    • pp.739-746
    • /
    • 2003
  • Ultraviolet B (UVB) is known to induce apoptosis in human melanocytes. Here we show the cytoprotective effect of sphingosine-1-phosphate (S1P) against UVB-induced apoptosis. We also show that UVB-induced apoptosis of melanocytes is mediated by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, and that S1P prevents apoptosis by inhibiting this apoptotic pathway. We further investigated three major mitogen-activated protein (MAP) kinases after UVB irradiation. UVB gradually activated c-Jun N-terminal kinase (JNK) and p38 MAP kinase, while extracellular signal-regulated protein kinase (ERK) was inactivated transiently. Blocking of the p38 MAP kinase pathway using SB203580 promoted cell survival and inhibited the activation of caspase-3 and PARP cleavage. These results suggest that p38 MAP kinase activation may play an important role in the UVB-induced apoptosis of human melanocytes. To explain this cytoprotective effect, we next examined whether S1P could inhibit UVB-induced JNK and p38 MAP kinase activation. However, S1P was not found to have any influence on UVB-induced JNK or p38 MAP kinase activation. In contrast, S1P clearly stimulated the phosphorylation of ERK, and the specific inhibition of the ERK pathway using PD98059 abolished the cytoprotective effect of S1P. Based on these results, we conclude that the activation of p38 MAP kinase plays an important role in UVB-induced apoptosis, and that S1P may show its cytoprotective effect through ERK activation in human melanocytes.

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • 제30권3호
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Studies on the Activation Mechanism of c-src Protein Tyrosine Kinase by Ginsenoside-Rgl

  • Hong, Hee-Youn;Yoo, Gyung-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • 제22권2호
    • /
    • pp.133-139
    • /
    • 1998
  • We have studied an activation mechanism of $pp60^{c-src}$ protein tyroslne kinase (PTK) by ginsenoside-$Rg_1$ (G-$Rg_1$ ) in NIH(pMcsrc/foc)B c-src overexpressor cells. It was previously reported that G--$Rg_1$ stimulated the activation of c-src kinase at 20 pM with a 18 hr-incubation, increasing the activity by 2-4-fold over that of untreated control, and this effect was blocked by treatments of in- hibitors of either protein synthesis (cycloheximide) or RNA synthesis (actinomycin D) (Hong, H.Y. et at. Arch. Pharm. Res. 16, 114 (1993)). However, an amount of c-src protein itself in wild-type cells was not changed by G-$Rg_1$. When the cells mutated at one or two tyrosine residue(s) (Y416/527) that are important sites to regulate the kinase activity were treated with G-$Rg_1$, increases both in the activity of c-src kinase and in the expression of the protein were not observed. In addition, removal of extracellular calcium ion by EGTA or inhibition of PKC by H-7 canceled the G-$Rg_1$-induced activation of the kinase. Although the activation was little affected by G-$Rg_1$ with a calcium ionophore A23187, it was synergistically stimulated by treatment of G-Rgl and PMA, a PKC activator. Taken together, these results suggest that the activation of c-src kinase by G-$Rg_1$ is caused by an increase in the specific activity of the kinase, but not in amount of it, and is involved with both collular calcium ion and PKC. Further the increase in the specific activity of c-src kinase may result from altered phosphorylation at tyro-416 and -527.

  • PDF

Effects of Curcumin, the Active Ingredient of Turmeric(Curcuma longa), on Regulation of Glutamate-induced Toxicity and Activation of the Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in HT22 Neuronal Cell

  • Lee, Sang-Hyun;Yun, Young-Gab
    • Natural Product Sciences
    • /
    • 제15권1호
    • /
    • pp.32-36
    • /
    • 2009
  • Glutamate causes neurotoxicity through formation of reactive oxygen species and activation of mitogen-activated protein kinase (MAPK) pathways. MAPK phosphatase-1 (MKP-1) is one of the phosphatases responsible for dephosphorylation/deactivation of three MAPK families: the extracellular signal-regulated kinase-1/2 (ERK-1/2), the c-Jun N-terminal kinase-1/2 (JNK-1/2), and the p38 MAPK. In this report, the potential involvement of MKP-1 in neuroprotective effects of curcumin, the active ingredient of turmeric (Curcuma longa), was examined using HT22 cells. Glutamate caused cell death and activation of ERK-1/2 but not p38 MAPK or JNK-1/2. Blockage of ERK-1/2 by its inhibitor protected HT22 cells against glutamate-induced toxicity. Curcumin attenuated glutamate-induced cell death and ERK-1/2 activation. Interestingly, curcumin induced MKP-1 activation. In HT22 cells transiently transfected with small interfering RNA against MKP-1, curcumin failed to inhibit glutamate-induced ERK-1/2 activation and to protect HT22 cells from glutamate-induced toxicity. These results suggest that curcumin can attenuate glutamate-induced neurotoxicity by activating MKP-1 which acts as the negative regulator of ERK-1/2. This novel pathway may contribute to and explain at least one of the neuroprotective actions of curcumin.

Effects of Various Calmodulins on the Activation of Glutamate Decarboxylase and Nicotinamide Adenine Dinucleotide Kinase Isolated from Tobacco Plants

  • Oh, Suk-Heung;Yun, Song Joong
    • Journal of Applied Biological Chemistry
    • /
    • 제42권1호
    • /
    • pp.19-24
    • /
    • 1999
  • Plants have been shown to contains $Ca^{2+}$/calmodulin-stimulated GAD and NAD kinase. To test how calmodulin and calmodulin methylation affect the activation of GAD and NAD kinase, GAD and NAD kinase were partially purified from tobacco plants. GAD was also partially purified from E. coli transformed with a plasmid carrying a cloned tobacco GAD gene. We find that GAD from the transformed E. coli showed 60-fold $Ca^{2+}$/calmodulin-dependent activation. However, GAD from tobacco plants was stimulated only about 3.8-fold by the addition of calmodulin in the presence of calcium, suggesting high background activity of the enzyme was possibly due to bound endogenous tobacco calmodulin. There were no significant differences in the tobacco GAD activator properties between calmodulins. A monoclonal antibody against petunia GAD interacted strongly with both GAD from tobacco plants and GAD from cloned gene. NAD kinase from tobacco plants showed a complete $Ca^{2+}$/calmodulin dependency for activity. Unmethylated calmodulins activated GAD in a manner similar to methylated calmodulin. However, the maximum level of NAD kinase activation obtained with unmethylated calmodulins is approximately 4-fold higher than methylated calmodutins. These data suggested that endogenous tobacco calmodulin may interact more tightly with GAD than NAD kinase and that calmodulin methylation affects the activator properties of calmodulins for tobacco NAD kinase but not for GAD.

  • PDF

Transient activation of the MAP kinase signaling pathway by the forward signaling of EphA4 in PC12 cells

  • Shin, Jong-Dae;Gu, Chang-Kyu;Kim, Ji-Eun;Park, Soo-Chul
    • BMB Reports
    • /
    • 제41권6호
    • /
    • pp.479-484
    • /
    • 2008
  • In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kineticsexhibited by the forward signaling of EphA4 in PC12 cells.

칼슘/칼모듈린-의존성 단백질 키나아제 I 키나아제에 의한 칼슘/칼모듈린-의존성 단백질 키나아제 Ia의 활성화에 따른 효소반응 특성의 변화 (Changes in Kinetic Properties of $Ca^{2+}$/Calmodulin-Dependent Protein Kinase la Activated by $Ca^{2+}$/Calmodulin-Dependent Protein Kinase I Kinase)

  • 조정숙
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.773-781
    • /
    • 1997
  • The activity of $Ca^{2+}$calmodulin (CaM)-dependent protein kinase Ia (CaM kinase Ia) is shown to be regulated through direct phosphorylation by CaM kinase I kinase (CaMK IK). In the present study, three distinct CaMKIK peaks were separated from Q-Sepharose colunm chromatography of pig brain homogenate using a Waters 650 Protein Purification System. The purified CaMKIK from the major peak potently and rapidly enhanced CaM kinase Ia activity, reaching a maximal stimulation within 2min at the concentrations of 12-15nM. The activated state of CaM kinase Ia is characterized by a markedly enhanced $V_{max}4 as well as significantly decreased $K_m\;and\;K_a$ values toward peptide substrate and CaM, respectively. These observations suggest the activation process of CaM kinase Ia. The phosphorylation of CaM kinase Ia by CaMKIK may induce its conformational change responsible for the alterations in the kinetic properties, which ultimately leads to the rapid enzyme activation.

  • PDF

Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전 (Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell)

  • 박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권2호
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

PKC Downstream of PI3-Kinase Regulates Peroxynitrite Formation for Nrf2-Mediated GSTA2 Induction

  • Kim, Sang-Geon;Kim, Sun-Ok
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.757-762
    • /
    • 2004
  • The protective adaptive response to electrophiles and reactive oxygen species is mediated by the induction of phase II detoxifying genes including glutathione S-transferases (GSTs). NF-E2-related factor-2 (Nrf2) phosphorylation by protein kinase C (PKC) is a critical event for its nuclear translocation in response to oxidative stress. Previously, we have shown that peroxynitrite plays a role in activation of Nrf2 and Nrf2 binding to the antioxidant response element (ARE) via the pathway of phosphatidylinositol 3-kinase (PI3-kinase) and that nitric oxide synthase in hepatocytes is required for GSTA2 induction. In view of the importance of PKC and Pl3-kinase in Nrf2-mediated GST induction, we investigated the role of these kinases in peroxynitrite formation for GSTA2 induction by oxidative stress and determined the relationship between PKC and PI3-kinase. Although PKC activation by phorbol 12-myristate-13-acetate (PMA) did not increase the extents of constitutive and inducible GSTA2 expression, either PKC depletion by PMA or PKC inhibition by staurosporine significantly inhibited GSTA2 induction by tert-butylhydroquinone (t-SHa) a prooxidant chemical. Therefore, the basal PKC activity is req- uisite for GSTA2 induction. 3-Morpholinosydnonimine (SIN-1), which decomposes and yields peroxynitrite, induced GSTA2, which was not inhibited by PKC depletion, but slightly enhanced by PKC activation, suggesting that PKC promotes peroxynitrite formation for Nrf2-mediated GSTA2 induction. Treatment of cells with S-nitroso-N-acetyl-penicillamine (SNAP), an exogenous NO donor, in combination with t-BHQ may produce peroxynitrite. GSTA2 induction by SNAP + t-BHQ was not decreased by PKC depletion, but rather enhanced by PKC activation, showing that the activity of PKC might be required for peroxynitrite formation. LY294002 a P13-kinase inhibitor blocked GSTA2 induction by t-BHQ, which was reversed by PMA-induced PKC activation. These results provide evidence that PKC may playa role in formation of peroxynitrite that activates Nrf2 for GSTA2 induction and that PKC may serve an activator for GSTA2 induction downstream of PI3-kinase.

인간 유방 MCF-12A 세포에서 PI3-kinase 경로를 통한 BCAR3의 estrogen response element 활성화 (BCAR3 Activates the Estrogen Response Element through the PI3-kinase/Akt Pathway in Human Breast MCF-12A Cells)

  • 오명주;하주연;전병학
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.882-889
    • /
    • 2022
  • Breast cancer anti-estrogen resistance 3 (BCAR3)는 유방암에서 항에스트로겐 내성을 유도하는 유전자들 중의 하나로 발견되었다. 우리는 이미 BCAR3가 c-jun, activator protein-1, serum response element의 promoter 등을 활성화하는 것을 보고하였다. 본 연구에서 우리는 정상 유방세포인 MCF-12A에서 estrogen response element (ERE) 활성에서의 BCAR3의 기능을 조사하였다. BCAR3의 발현이 ERE를 활성화하는 것을 발견하였다. 이 ERE 활성화는 17β-estradiol에 의해 더욱 증가하였고, 이는 항에스트론겐인 tamoxifen에 의해 억제되지 않았다. 다음으로 우리는 ERE 활성화를 이끄는 BCAR3의 신호전달 경로를 연구하였다. BCAR3에 의한 ERE 활성화는 phosphatidylinositol (PI) 3-kinase 경로 억제제인 LY294002와 AZD5363에 의해서는 억제되었으나, Mitogen-activated protein kinase 경로 억제제인 PD98059와 U0126에 의해서는 억제되지 않았다. ERE 활성화는 PI3-kinase의 catalytic subunit p110α와 Akt의 active mutant에 의해서는 유도되었고, 이 활성화는 추가적인 BCAR3에 의해서는 더욱 증가하지 않았다. 이러한 결과로부터 우리는 BCAR3가 PI3-kinase/Akt 신호전달경로를 통하여 ERE 활성화에 중요한 역할을 하는 것을 제시한다.