• Title/Summary/Keyword: Kim Yungu

Search Result 5, Processing Time 0.015 seconds

Reorganization of Royal Architectural Bureau in Gungnaebu during 1905-1910 (통감부 시기 궁내부 왕실 건축조직의 재편)

  • Lee, Geau-Chul
    • Journal of architectural history
    • /
    • v.23 no.5
    • /
    • pp.61-71
    • /
    • 2014
  • Through the changes of royal architectural bureau in Gungnaebu, this study attempts to find out the modern transition of traditional facilities belonging to Gungnaebu as well as the constituent of human resources in royal architectural bureau. Yeongseonsa, the royal architectural bureau in Gungnaebu after 1905, was comprised of traditional architectural engineers including Sim Euiseok, and they tried the modern transition of traditional royal facilities gradually. But, Yeongseonsa was transformed to Naejangwon Tomokgwa which was comprised of Kim Yungu and Japanese modern architectural engineers. As Kim Yungu was the modern civil engineer not architectural engineer, Japanese architectural engineers took the lead in the architectural activities of Naejangwon Tomokgwa, and Japanese architectural technology was applied to Korean royal facilities since then.

A Method for Data Access Control and Key Management in Mobile Cloud Storage Services (모바일 클라우드 스토리지 서비스에서의 데이터 보안을 위한 데이터 접근 제어 및 보안 키 관리 기법)

  • Shin, Jaebok;Kim, Yungu;Park, Wooram;Park, Chanik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.303-309
    • /
    • 2013
  • Cloud storage services are used for efficient sharing or synchronizing of user's data across multiple mobile devices. Although cloud storages provide flexibility and scalability in storing data, security issues should be handled. Currently, typical cloud storage services offer data encryption for security purpose but we think such method is not secure enough because managing encryption keys by software and identifying users by simple ID and password are main defectives of current cloud storage services. We propose a secure data access method to cloud storage in mobile environment. Our framework supports hardware-based key management, attestation on the client software integrity, and secure key sharing across the multiple devices. We implemented our prototype using ARM TrustZone and TPM Emulator which is running on secure world of the TrustZone environment.

ANN-based Adaptive Distance Measurement Using Beacon (비콘을 사용한 ANN기반 적응형 거리 측정)

  • Noh, Jiwoo;Kim, Taeyeong;Kim, Suntae;Lee, Jeong-Hyu;Yoo, Hee-Kyung;Kang, Yungu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.147-153
    • /
    • 2018
  • Beacon enables one to measure distance indoors based on low-power Bluetooth low energy (BLE) technology, while GPS (Global Positioning System) only can be used outdoors. In measuring indoor distance using Beacon, RSSI (Received Signal Strength Indication) is considered as the one of the key factors, however, it is influenced by various environmental factors so that it causes the huge gap between the estimated distance and the real. In order to handle this issue, we propose the adaptive ANN (Artificial Neural Network) based approach to measuring the exact distance using Beacon. First, we has carried out the preprocessing of the RSSI signals by applying the extended Kalman filter and the signal stabilization filter into decreasing the noise. Then, we suggest the multi-layered ANNs, each of which layer is learned by specific training data sets. The results showed an average error of 0.67m, a precision of 0.78.

Evaluation of the Usability of Micro-Sensors for the Portable Fine Particle Measurement (생활 속 미세먼지 영향평가를 위한 소형센서의 신뢰성 및 활용성 평가)

  • Kim, Jinsu;Jang, Youjung;Kim, Jinseok;Park, Minwoo;Bu, Chanjong;Lee, Yungu;Kim, Younha;Woo, Jung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.378-393
    • /
    • 2018
  • As atmospheric fine dust problems in Korea become more serious, there are growing needs to find the concentration of fine particles in indoor and outdoor areas and there are increasing demands for sensor-based portable monitoring devices capable of measuring fine dust concentrations instantly. The low-cost portable monitoring devices have been widely manufactured and used without the prescribed certification standards which would cause unnecessary confusion to the concerned public. To evaluate the reliability those devices and to improve their usability, following studies were conducted in this work; 1) The comparisons between sensor-based devices and comparison with more accurate devices were performed. 2) Several experiments were conducted to understand usefulness of the portable monitoring devices. As results, the absolute concentration levels need to be adjusted due to insensitivity of the tiny light scattering sensors in the portable devices, but their linearity and reproducibility seem to be acceptable. By using those monitoring devices, users are expected to have benefits of recognizing the changes of concentration more quickly and could help preventing themselves from the adverse health impacts.

Design of FMCW Radar Signal Processor for Human and Objects Classification Based on Respiration Measurement (호흡 기반 사람과 사물 구분 가능한 FMCW 레이다 신호처리 프로세서의 설계)

  • Lee, Yungu;Yun, Hyeongseok;Kim, Suyeon;Heo, Seongwook;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • Even though various types of sensors are being used for security applications, radar sensors are being suggested as an alternative due to the privacy issues. Among those radar sensors, PD radar has high-complexity receiver, but, FMCW radar requires fewer resources. However, FMCW has disadvantage from the use of 2D-FFT which increases the complexity, and it is difficult to distinguish people from objects those are stationary. In this paper, we present the design and the implementation results of the radar signal processor (RSP) that can distinguish between people and object by respiration measurement using phase estimation without 2D-FFT. The proposed RSP is designed with Verilog-HDL and is implemented on FPGA device. It was confirmed that the proposed RSP includes 6,425 LUT, 4,243 register, and 12,288 memory bits with 92.1% accuracy for target's breathing status.