• Title/Summary/Keyword: Keyword-based

Search Result 1,126, Processing Time 0.027 seconds

Research Trends in the Journal of Korean Academic Society of Home Health Care Nursing from 2010 to 2019: Using the Keyword Home Health Care (가정간호학회지 게재 논문 분석: 2010년부터 2019년까지 가정간호분야를 중심으로)

  • Jun, Eun-Young;Noh, Jun Hee
    • Journal of Home Health Care Nursing
    • /
    • v.27 no.2
    • /
    • pp.210-218
    • /
    • 2020
  • Purpose: The purpose of this study was to analyze research trends, using the keyword home health care, in articles published in the Journal of Korean Academic Society of Home Health Care Nursing over the past 10 years. Methods: An analysis was conducted of 50 home health care-based studies chosen from among the 206 studies published in the Journal of Korean Academic Society of Home Health Care Nursing from 2010 to 2019. The analysis focused on research methodology and keyword. Descriptive statistics were used to examine the frequency distribution of research methods and keywords. Results: Study participation was mainly focused on nurses (52.0%). Most of the studies used quantitative methods (96.0%), and 43 studies (86.0%) used self-report structured questionnaires. The most commonly used data analyses methods were descriptive statistics, t-test, analysis of variance, correlation, and regression. Major keywords were home health nursing, elderly care facility, visiting nurse, home care service, home healthcare nurse, home care agencies, long-term care, and home care. Conclusion: The results of this study identified current trends and interests in the Journal of Korean Academic Society of Home Health Care Nursing. This study suggests that future studies include a variety of research methods and maintain appropriate standards of research ethics.

Tendency and Network Analysis of Diet Using Big Data (빅데이터를 활용한 다이어트 현황 및 네트워크 분석)

  • Jung, Eun-Jin;Chang, Un-Jae
    • Journal of the Korean Dietetic Association
    • /
    • v.22 no.4
    • /
    • pp.310-319
    • /
    • 2016
  • Limitation of a questionnaire survey which is widely used is time and money, limited numbers of participants, biased confidence interval and unreliable results. To overcome these, we performed tendency and network analysis of diet using big Data in Koreans. The keyword on diet were collected from the portal site Naver from January 1, 2015 until December 31, 2015 and collected data were analyzed by simple frequency analysis, N-gram analysis, keyword network analysis and seasonality analysis. The results showed that diet menu appeared most frequently by N-gram analysis, even though exercise had the highest frequency by simple frequency analysis. In addition, keyword network analysis were categorized into four groups: diet group, exercise group, commercial diet program company group and commercial diet food group. The analysis of seasonality showed that subjects' interests in diet had increased steadily since February, 2015, although subjects were most interested indiet in July, these results suggest that the best strategies for weight loss are based on diet menu and starting diet before July. As people are especially sensitive to diet trends, researches are needed about annual analysis of big data.

ANALYZING RELATIONSHIPS THE AMONG WEB LINK STRUCTURE, WEBPAGE KEYWORD, AND POPULAR RANK : Travel Industry (웹링크 구조, 키워드, 사이트인기도 간의 관계성 분석에 관한 연구 : 관광산업을 중심으로)

  • Joun, Hyo-Jae;Cho, Nam-Jae
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.167-180
    • /
    • 2006
  • Websites in the Internet are uncontrollable domain and various contents in websites lead people's activities and thoughts and new business paradigms for the future. These phenomena are from expanding the social network based on the endless growth of information technology. Websites are composed with many of links and communicating and expanding their virtual area by links, inbound, outbound, onsite, and of offsite links. Research and practice in digital information on the web have focused on finding and measuring artifacts, factors and attributes of web structure and contents from the perspective that information is a resource and property of products and services. Websites links is one of the core artifacts for understanding the virtual area. This study identifies the role of web link structure and webpage keyword as artifacts and examines their relationships by webpage rank by a minimal hub as performance in the business websites that are serving tourism information. Discovering relationships of links provides managerial insights on organizations virtual activities and systematic understandings about digitalized organizational information in the information use environment.

  • PDF

Research Trends in Journal of Fashion Business -A Social Network Analysis of Keywords in Fashion Marketing and Design Area- (키워드 네트워크 분석을 통한 「패션비즈니스」 연구 동향 -패션마케팅 및 디자인 분야를 중심으로-)

  • Lee, MiYoung;Lee, Jungmin
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.51-66
    • /
    • 2019
  • The aim of this study is to identify research trends of "Journal of Fashion Business" by analyzing the keyword network of the paper published between 2006 and 2017. The papers selected for analysis in the study were 287 fashion design articles and 281 fashion marketing articles published between February 2006 and December 2017 and titles, volumes, publishing years, authors, keywords, and abstracts of each paper were collected for data analysis. The research was carried out through selection, collection of article data, keyword extraction and coding, keywords refinement, formation of network matrix, and analysis and visualization process. First, based on the title of the paper used in the analysis, the fashion design/aesthetics, marketing/social psychology, clothing materials, clothing composition, and other fields were classified. Research analysis used the Netminer 4 (Ver.4.3.2) program. Results indicated showed that the intellectual structure of the "Fashion Business" research paper showed key word changes over time, and the degree centrality and between centrality of the keywords.

Knowledge Evolution in Construction Automation Research

  • Mun, Seong-Hwan;Kim, Taehoon;Lee, Ung-Kyun;Cho, Kyuman;Lim, Hyunsu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.577-584
    • /
    • 2020
  • Construction automation and robotics have been widely adopted in the construction industry as a promising solution to such issues like a shortage of skilled labor and the difficulties workers face in harsh working environments. The analysis of the knowledge structure and its evolution from the existing articles helps identify essential knowledge elements and possible future research directions. This study attempts to (1) construct keyword networks from the papers published in the International Symposium on Automation and Robotics in Construction (ISARC), (2) investigate how keywords and keyword communities are associated with each other, and (3) examine the changes in the crucial keywords over time. Through cluster analysis, 79 keywords were categorized into four groups (BIM, Building construction, Sensing, and GPS as representative keywords) with similar structural positions. Research trends show that research themes related to Infrastructure, Construction equipment, and 3D have consistently received a large amount of attention, regardless of geographical region. Research on as-built status model utilization through BIM and Laser scanning and improving Energy performance is taking place more frequently. In contrast, research studies related to problem-solving based on Neural networks are not as common as previously. This study provides useful insights into the construction automation field, at both the macro and micro levels.

Research Trend on Digital Twin Based on Keyword Frequency and Centrality Analysis : Focusing on Germany, the United States, Korea (키워드 빈도 및 중심성 분석에 기반한 디지털 트윈 연구 동향 : 독일·미국·한국을 중심으로)

  • Lee Taekkyeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.11-25
    • /
    • 2024
  • This study aims to analyze research trends in digital twin focusing on Germany, the US, and Korea. In Elsevier's Scopus, we collected 4,657 papers about digital twin published in from 2019 to 2023. Keyword frequency and centrality analysis were conducted on the abstracts of the collected papers. Through the obtained keyword frequencies, we tried to identify keywords with high frequency of occurrence and through centrality analysis, we tried to identify central research keywords for each country. In each country, 'digital_twin', 'machine_learning', and 'iot' appeared as research keywords with the highest interest. As a result of the centrality analysis, research on digital twin, simulation, cyber physical system, Internet of Things, artificial intelligence, and smart manufacturing was conducted as research with high centrality in each country. The implication for Korea is that research on virtual reality, digital transformation, reinforcement learning, industrial Internet of Things, robotics, and data analysis appears to have been conducted with low centrality, and intensive research in related areas appears to be necessary.

Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique (키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석)

  • Youngseok Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2023
  • In this study, trends in ICT education were investigated by analyzing the frequency of appearance of keywords related to machine learning and using conversion of iteration correction(CONCOR) techniques. A total of 304 papers from 2018 to the present published in registered sites were searched on Google Scalar using "ICT education" as the keyword, and 60 papers pertaining to ICT education were selected based on a systematic literature review. Subsequently, keywords were extracted based on the title and summary of the paper. For word frequency and indicator data, 49 keywords with high appearance frequency were extracted by analyzing frequency, via the term frequency-inverse document frequency technique in natural language processing, and words with simultaneous appearance frequency. The relationship degree was verified by analyzing the connection structure and centrality of the connection degree between words, and a cluster composed of words with similarity was derived via CONCOR analysis. First, "education," "research," "result," "utilization," and "analysis" were analyzed as main keywords. Second, by analyzing an N-GRAM network graph with "education" as the keyword, "curriculum" and "utilization" were shown to exhibit the highest correlation level. Third, by conducting a cluster analysis with "education" as the keyword, five groups were formed: "curriculum," "programming," "student," "improvement," and "information." These results indicate that practical research necessary for ICT education can be conducted by analyzing ICT education trends and identifying trends.

Current Research Trends in Entrepreneurship Based on Topic Modeling and Keyword Co-occurrence Analysis: 2002~2021 (토픽모델링과 동시출현단어 분석을 이용한 기업가정신에 대한 연구동향 분석: 2002~2021)

  • Jang, Sung Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2022
  • The purpose of this study is to provide comprehensive insights on the current research trends in entrepreneurship based on topic modeling and keyword co-occurrence analysis. This study queried Web of Science database with 'entrepreneurship' and collected 14,953 research articles between 2002 and 2021. The study used R program for topic modeling and VOSviewer program for keyword co-occurrence analysis. The results of this study are as follows. First, as a result of keyword co-occurrence analysis, 5 clusters divided: entrepreneurship and innovation cluster, entrepreneurship education cluster, social entrepreneurship and sustainability cluster, enterprise performance cluster, and knowledge and technology transfer cluster. Second, as a result of the topic modeling analysis, 12 topics found: start-up environment and economic development, international entrepreneurship, venture capital, government policy and support, social entrepreneurship, management-related issues, regional city planning and development, entrepreneurship research, and entrepreneurial intention. Finally, the study identified two hot topics(venture capital and entrepreneurship intention) and a cold topic(international entrepreneurship). The results of this study are useful to understand current research trends in entrepreneurship research and provide insights into research of entrepreneurship.

Research Trends in Global Cruise Industry Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 세계 크루즈산업 연구동향)

  • Jhang, Se-Eun;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.607-614
    • /
    • 2014
  • This article aims to explore and discuss research trends in global cruise industry using keyword network analysis. We visualize keyword networks in each of four groups of 1982-1999, 2000-2004, 2005-2009, 2010-2014 based on the top 20 keyword nodes' degree centrality and betweenness centrality which are selected among four centrality measurements, comparing them with frequency order. The article shows that keyword frequency collected from 240 articles published in international journals is subject to Zipf's law and nodes degree distribution also exhibits power law. We try to find out research trends in global cruise industry to change some important keywords diachronically, visualizing several networks focusing on the top two keywords, cruise and tourism, belonging to all the four year groups, with high degree and betweenness centrality values. Interestingly enough, a new node, China, connecting the top most keywords, appears in the most recent period of 2010-2014 when China has emerged as one of the rapid development countries in global cruise industry. Therefore keyword network analysis used in this article will be useful to understand research trends in global cruise industry because of increase and decrease of numbers of network types in different year groups and the visual connection between important nodes in giant components.

Keyword Filtering about Disaster and the Method of Detecting Area in Detecting Real-Time Event Using Twitter (트위터를 활용한 실시간 이벤트 탐지에서의 재난 키워드 필터링과 지명 검출 기법)

  • Ha, Hyunsoo;Hwang, Byung-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.345-350
    • /
    • 2016
  • This research suggests the keyword filtering about disaster and the method of detecting area in real-time event detecting system by analyzing contents of twitter. The diffusion of smart-mobile has lead to a fast spread of SNS and nowadays, various researches based on studying SNS are being processed. Among SNS, the twitter has a characteristic of fast diffusion since it is written in 140 words of short paragraph. Therefore, the tweets that are written by twitter users are able to perform a role of sensor. By using these features the research has been constructed which detects the events that have been occurred. However, people became reluctant to open their information of location because it is reported that private information leakage are increasing. Also, problems associated with accuracy are occurred in process of analyzing the tweet contents that do not follow the spelling rule. Therefore, additional designing keyword filtering and the method of area detection on detecting real-time event process were required in order to develop the accuracy. This research suggests the method of keyword filtering about disaster and two methods of detecting area. One is the method of removing area noise which removes the noise that occurred in the local name words. And the other one is the method of determinating the area which confirms local name words by using landmarks. By applying the method of keyword filtering about disaster and two methods of detecting area, the accuracy has improved. It has improved 49% to 78% by using the method of removing area noise and the other accuracy has improved 49% to 89% by using the method of determinating the area.