• 제목/요약/키워드: Keyword-based

검색결과 1,126건 처리시간 0.037초

가변어휘 핵심어 검출을 위한 비핵심어 모델링 및 후처리 성능평가 (Performance Evaluation of Nonkeyword Modeling and Postprocessing for Vocabulary-independent Keyword Spotting)

  • 김형순;김영국;신영욱
    • 음성과학
    • /
    • 제10권3호
    • /
    • pp.225-239
    • /
    • 2003
  • In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.

  • PDF

음소 HMM을 이용한 Keyword Spotting 시스템에서의 Non-Keyword 모델에 관한 연구 (A Study on the Non-keyword Models in the Keyword Spotting System using the Phone-Based Hidden Markov Models)

  • 이활림
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.83-87
    • /
    • 1995
  • Keyword Spotting 이란 음성인식의 한 분야로서 입력된 음성에서 미리 정해진 특정단어 또는 복수 개의 단어들 중 어느 것이 포함되어 있는지의 여부를 찾아내고 이 단어를 식별해 내는 작업을 의미한다. 음소모델을 이용하여 Keyword Spotting 시스템을 구성할 경우 새로운 keyword의 추가 또는 변경이 필요할 때 단순히 그 발음사전에 따라 음소모델들을 연결시킴으로써 keyword 모델을 구성할 수 있으므로 단어모델에 의한 방법에 비해 장점이 있다. 본 논문에서는 triphone을 기본단위로 하는 HMM 에 의해 keyword 모델을 구성하고, non-keyword 모델 및 silence 모델을 함께 사용하는 keyword spotting 시스템을 구성하였다. 이러한 시스템에서 non-keyword 모델은 keyword와 keyword가 아닌 음성을 구분 지어주는 역할을 하므로 인식성능의 향상을 위해서는 적절한 non-keyword 모델의 선택이 필요하다. 본 논문에서는 10개의 state를 갖는 단일모델, 조음방법에 의해 음소들을 clustering 한 모델, 그리고 통계적 방법에 의해 음소들을 clustering 한 모델들을 각각 non-keyword 모델로 사용하여 그 성능을 비교하였다. 6개의 keyword를 대상으로 한 화자독립 keyword spotting 실험결과, 통계적 방법에 의해 음소들을 6 또는 7개의 그룹으로 clustering 한 방법이 가장 우수한 인식성능을 나타냈다.

  • PDF

키워드 검색 지원을 위한 확장 CAN 메커니즘 (Extended-CAN Mechanism to Support Keyword Search)

  • 이명훈;박정수;조인준
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.421-429
    • /
    • 2006
  • 분산 해쉬 테이블 기반의 구조적 P2P시스템은 확장성이 우수하며 체계적인 검색과 라우팅을 수행하기 때문에 효율적인 검색이 가능하여 주목을 받고 있다. 그러나 이러한 장점에도 불구하고 공유파일 검색이 파일 식별자의 정확한 일치를 통해서만 가능하다. 즉 키워드 검색을 지원하지 못함으로써 P2P 응용에 있어 커다란 걸림돌이 되고 있다. 본 논문은 분산 해쉬 테이블 기반의 구조적 P2P 시스템 에서 공유파일의 컨텐츠 기반 키워드 추출 및 파일 식별자를 생성하고 PLS의 확장을 통해 키워드 사전인 KID와 CKD를 작성하여 피어에서 키워드 검색을 지원하는 확장된 CAN 메커니즘을 제안하였다.

Secure and Efficient Conjunctive Keyword Search Scheme without Secure Channel

  • Wang, Jianhua;Zhao, Zhiyuan;Sun, Lei;Zhu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2718-2731
    • /
    • 2019
  • Conjunctive keyword search encryption is an important technique for protecting sensitive data that is outsourced to cloud servers. However, the process of searching outsourced data may facilitate the leakage of sensitive data. Thus, an efficient data search approach with high security is critical. To solve this problem, an efficient conjunctive keyword search scheme based on ciphertext-policy attribute-based encryption is proposed for cloud storage environment. This paper proposes an efficient mechanism for removing the secure channel and resisting off-line keyword-guessing attacks. The storage overhead and the computational complexity are regardless of the number of keywords. This scheme is proved adaptively secure based on the decisional bilinear Diffie-Hellman assumption in the standard model. Finally, the results of theoretical analysis and experimental simulation show that the proposed scheme has advantages in security, storage overhead and efficiency, and it is more suitable for practical applications.

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현 (Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS)

  • 서현곤;박희완
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.17-24
    • /
    • 2018
  • 빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.

Keyword Analysis Based Document Compression System

  • Cao, Kerang;Lee, Jongwon;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.48-51
    • /
    • 2018
  • The traditional documents analysis was centered on words based system was implemented using a morpheme analyzer. These traditional systems can classify used words in the document but, cannot help to user's document understanding or analysis. In this problem solved, System needs extract for most valuable paragraphs what can help to user understanding documents. In this paper, we propose system extracts paragraphs of normalized XML document. User insert to system what filename when wants for analyze XML document. Then, system is search for keyword of the document. And system shows results searched keyword. When user choice and inserts keyword for user wants then, extracting for paragraph including keyword. After extracting paragraph, system operating maintenance paragraph sequence and check duplication. If exist duplication then, system deletes paragraph of duplication. And system informs result to user what counting each keyword frequency and weight to user, sorted paragraphs.

방송뉴스 핵심어 검출 시스템에서의 오인식 거부를 위한 DTW의 적용 (DTW based Utterance Rejection on Broadcasting News Keyword Spotting System)

  • 박경미;박정식;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.155-158
    • /
    • 2005
  • Keyword spotting is effective to find keyword from the continuously pronounced speech. However, non-keyword may be accepted as keyword when the environmental noise occurs or speaker changes. To overcome this performance degradation, utterance rejection techniques using confidence measure on the recognition result have been developed. In this paper, we apply DTW to the HMM based broadcasting news keyword spotting system for rejecting non-keyword. Experimental result shows that false acceptance rate is decreased to 50%.

  • PDF

핵심어 인식을 이용한 음성 자동 편집 시스템 구현 (Implementation of the Automatic Speech Editing System Using Keyword Spotting Technique)

  • 정익주
    • 음성과학
    • /
    • 제3권
    • /
    • pp.119-131
    • /
    • 1998
  • We have developed a keyword spotting system for automatic speech editing. This system recognizes the only keyword 'MBC news' and then sends the time information to the host system. We adopted a vocabulary dependent model based on continuous hidden Markov model, and the Viterbi search was used for recognizing the keyword. In recognizing the keyword, the system uses a parallel network where HMM models are connected independently and back-tracking information for reducing false alarms and missing. We especially focused on implementing a stable and practical real-time system.

  • PDF

SPARQL Query Automatic Transformation Method based on Keyword History Ontology for Semantic Information Retrieval

  • Jo, Dae Woong;Kim, Myung Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.97-104
    • /
    • 2017
  • In semantic information retrieval, we first need to build domain ontology and second, we need to convert the users' search keywords into a standard query such as SPARQL. In this paper, we propose a method that can automatically convert the users' search keywords into the SPARQL queries. Furthermore, our method can ensure effective performance in a specific domain such as law. Our method constructs the keyword history ontology by associating each keyword with a series of information when there are multiple keywords. The constructed ontology will convert keyword history ontology into SPARQL query. The automatic transformation method of SPARQL query proposed in the paper is converted into the query statement that is deemed the most appropriate by the user's intended keywords. Our study is based on the existing legal ontology constructions that supplement and reconstruct schema and use it as experiment. In addition, design and implementation of a semantic search tool based on legal domain and conduct experiments. Based on the method proposed in this paper, the semantic information retrieval based on the keyword is made possible in a legal domain. And, such a method can be applied to the other domains.

키워드 기반 탐색적 테스트의 실험적 연구 (Experimental Study of Keyword-Based Exploratory Testing)

  • 황준선;최은만
    • 소프트웨어공학소사이어티 논문지
    • /
    • 제29권2호
    • /
    • pp.13-20
    • /
    • 2020
  • 탐색 테스트는 빠른 개발 주기라는 특징으로 바람직한 테스트 방법으로 소개되었으나 적용을 위하여 문서화 및 테스트 범위의 분석이 요구되어 적극적으로 채택하지 않고 있다. 한편 키워드 기반 테스트는 리소스 절약 및 유지 관리를 용이하게 하는 방법으로 소개되었으나 데이터, 설정, 상호 작용, 시퀀스 및 타이밍과 같은 변수가 많아 테스트를 미리 계획하는 것이 쉽지 않다. 하지만 키워드 기반 테스트에서 키워드를 작성하기 위한 명확한 기준과 방법을 제시하고 탐색 테스트 프로세스를 적용하여 키워드를 기반으로 테스트 사례를 만들 수 있다. 이 논문에서는 키워드 기반으로 탐색적 테스트를 자동화 하는 모델을 제안하고 실험한다. 효과를 검증하기 위해 일반 키워드 기반 테스트(KBT)와 탐색적 키워드 기반 테스트(KBET)와 비교하였고 탐색적 정상 테스트 사례(ETC) 및 탐색적 키워드 기반 테스트(KBET)와 비교하였다.