• Title/Summary/Keyword: Keying

Search Result 553, Processing Time 0.018 seconds

Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks

  • Xu, Huimin;Dai, Shujun;Zhang, Keying;Ding, Xuemei;Bai, Shiping;Wang, Jianping;Peng, Huanwei;Zeng, Qiufeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1897-1906
    • /
    • 2019
  • Objective: An experiment was conducted to investigate the effects of dietary non-phytate phosphorus (nPP) deficiency on intestinal pH value, digestive enzyme activity, morphology, nutrient utilization, and gene expression of NaPi-IIb in meat ducks from 1 to 21 d of age. Methods: A total of 525 one-d-old Cherry Valley ducklings were fed diets (with 7 pens of 15 ducklings, or 105 total ducklings, on each diet) with five levels of nPP (0.22%, 0.34%, 0.40%, 0.46%, or 0.58%) for 21 d in a completely randomized design. Five experimental diets contained a constant calcium (Ca) content of approximately 0.9%. Body weight (BW), body weight gain (BWG), feed intake (FI), and feed to gain ratio (F:G) were measured at 14 and 21 d of age. Ducks were sampled for duodenum and jejunum digestion and absorption function on 14 and 21 d. Nutrient utilization was assessed using 25- to 27-d-old ducks. Results: The results showed ducks fed 0.22% nPP had lower (p<0.05) growth performance and nutrient utilization and higher (p<0.05) serum Ca content and alkaline phosphatase (ALP) activity. When dietary nPP levels were increased, BW (d 14 and 21), BWG and FI (all intervals), and the serum phosphorus (P) content linearly and quadratically increased (p<0.05); and the jejunal pH value (d 14), duodenal muscle layer thickness (d 14), excreta dry matter, crude protein, energy, Ca and total P utilization linearly increased (p<0.05); however, the serum ALP activity, jejunal $Na^+-K^+$-ATPase activity, and duodenal NaPi-IIb mRNA level (d 21) linearly decreased (p<0.05). Conclusion: The results indicated that ducks aged from 1 to 21 d fed diets with 0.22% nPP had poor growth performance related to poor intestinal digestion and absorption ability; but when fed diets with 0.40%, 0.46%, and 0.58% nPP, ducks presented a better growth performance, intestinal digestion and absorption function.

Power-efficiency Analysis of the MIMO-VLC System considering Dimming Control (조광제어를 고려한 MIMO-VLC 시스템의 전력 효율 분석)

  • Kim, Yong-Won;Lee, Byung-Jin;Lee, Byung-Hoon;Lee, Min-Jung;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.169-180
    • /
    • 2018
  • White light-emitting diodes (LEDs) are more economical than fluorescent lights, and provide high brightness, a high lifetime expectancy, and greater durability. As LEDs are closely connected with people's daily lives, dimming control of LED is an important component in providing energy savings and improving quality of life. In visible light communications systems using these LEDs, multiple input multiple output (MIMO) technology has attracted a lot of attention, in that it can attain the channel capacity in proportion to the number of antennas. This paper analyzes the power performance of three kinds of modulation in visible light communications (VLC) systems applied space-time block code (STBC) techniques. The modulation schemes are return-to-zero on-off keying (RZ-OOK), variable pulse position modulation (VPPM), and overlapping pulse position modulation (OPPM), and dimming control was applied. The power requirements and power consumption were used as metrics to compare the power efficiency in $2{\times}2$ STBC-VLC environments under the three kinds of modulation. We confirm that dimming control affects the communications performance of each modulation scheme. VPPM showed greater consumption among the three modulations, and OPPM showed energy savings comparable to VPPM.

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].