• Title/Summary/Keyword: Key-Points Extraction

Search Result 38, Processing Time 0.019 seconds

Extracting Road Points from LiDAR Data for Urban Area (도심지역 LiDAR자료로부터 도로포인트 추출기법 연구)

  • Jang, Young Woon;Choi, Yun Woong;Cho, Gi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.269-276
    • /
    • 2008
  • Recently, constructing the database of road network is a main key in various social operation as like the transportation, management, security, disaster assesment, and the city plan in our life. However it need high expenses for constructing the data, and relies on many people for finishing the tasks. This study proposed the classification method for discriminating between the road and building points using the entropy theory, then detects the classes as a expecting road from the classified point group using the standard reflectance intensity of road and the characteristics restricted by raw. Hence the main object of this study is to develop a method which can detect the road in urban area using only the LiDAR data.

Railway Track Extraction from Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구)

  • Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

A Study on 2D/3D image Conversion Method using Create Depth Map (2D/3D 변환을 위한 깊이정보 생성기법에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1897-1903
    • /
    • 2011
  • This paper discusses a 2D/3D conversion of images using technologies like object extraction and depth-map creation. The general procedure for converting 2D images into a 3D image is extracting objects from 2D image, recognizing the distance of each points, generating the 3D image and correcting the image to generate with less noise. This paper proposes modified new methods creating a depth-map from 2D image and recognizing the distance of objects in it. Depth-map information which determines the distance of objects is the key data creating a 3D image from 2D images. To get more accurate depth-map data, noise filtering is applied to the optical flow. With the proposed method, better depth-map information is calculated and better 3D image is constructed.

Development and Lessons Learned of Clinical Data Warehouse based on Common Data Model for Drug Surveillance (약물부작용 감시를 위한 공통데이터모델 기반 임상데이터웨어하우스 구축)

  • Mi Jung Rho
    • Korea Journal of Hospital Management
    • /
    • v.28 no.3
    • /
    • pp.1-14
    • /
    • 2023
  • Purposes: It is very important to establish a clinical data warehouse based on a common data model to offset the different data characteristics of each medical institution and for drug surveillance. This study attempted to establish a clinical data warehouse for Dankook university hospital for drug surveillance, and to derive the main items necessary for development. Methodology/Approach: This study extracted the electronic medical record data of Dankook university hospital tracked for 9 years from 2013 (2013.01.01. to 2021.12.31) to build a clinical data warehouse. The extracted data was converted into the Observational Medical Outcomes Partnership Common Data Model (Version 5.4). Data term mapping was performed using the electronic medical record data of Dankook university hospital and the standard term mapping guide. To verify the clinical data warehouse, the use of angiotensin receptor blockers and the incidence of liver toxicity were analyzed, and the results were compared with the analysis of hospital raw data. Findings: This study used a total of 670,933 data from electronic medical records for the Dankook university clinical data warehouse. Excluding the number of overlapping cases among the total number of cases, the target data was mapped into standard terms. Diagnosis (100% of total cases), drug (92.1%), and measurement (94.5%) were standardized. For treatment and surgery, the insurance EDI (electronic data interchange) code was used as it is. Extraction, conversion and loading were completed. R language-based conversion and loading software for the process was developed, and clinical data warehouse construction was completed through data verification. Practical Implications: In this study, a clinical data warehouse for Dankook university hospitals based on a common data model supporting drug surveillance research was established and verified. The results of this study provide guidelines for institutions that want to build a clinical data warehouse in the future by deriving key points necessary for building a clinical data warehouse.

  • PDF

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

Strategies for the Development of Watermelon Industry Using Unstructured Big Data Analysis

  • LEE, Seung-In;SON, Chansoo;SHIM, Joonyong;LEE, Hyerim;LEE, Hye-Jin;CHO, Yongbeen
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.1
    • /
    • pp.47-62
    • /
    • 2021
  • Purpose: Our purpose in this study was to examine the strategies for the development of watermelon industry using unstructured big data analysis. That is, this study was to look the change of issues and consumer's perception about watermelon using big data and social network analysis and to investigate ways to strengthen the competitiveness of watermelon industry based on that. Methodology: For this purpose, the data was collected from Naver (blog, news) and Daum (blog, news) by TEXTOM 4.5 and the analysis period was set from 2015 to 2016 and from 2017-2018 and from 2019-2020 in order to understand change of issues and consumer's perception about watermelon or watermelon industry. For the data analysis, TEXTOM 4.5 was used to conduct key word frequency analysis, word cloud analysis and extraction of metrics data. UCINET 6.0 and NetDraw function of UCINET 6.0 were utilized to find the connection structure of words and to visualize the network relations, and to make a cluster of words. Results: The keywords related to the watermelon extracted such as 'the stalk end of a watermelon', 'E-mart', 'Haman', 'Gochang', and 'Lotte Mart' (news: 015-2016), 'apple watermelon', 'Haman', 'E-mart', 'Gochang', and' Mudeungsan watermelon' (news: 2017-2018), 'E-mart', 'apple watermelon', 'household', 'chobok', and 'donation' (news: 2019-2020), 'watermelon salad', 'taste', 'the heat', 'baby', and 'effect' (blog: 2015-2016), 'taste', 'watermelon juice', 'method', 'watermelon salad', and 'baby' (blog: 2017-2018), 'taste', 'effect', 'watermelon juice', 'method', and 'apple watermelon' (blog: 2019-2020) and the results from frequency and TF-IDF analysis presented. And in CONCOR analysis, appeared as four types, respectively. Conclusions: Based on the results, the authors discussed the strategies and policies for boosting the watermelon industry and limitations of this study and future research directions. The results of this study will help prioritize strategies and policies for boosting the consumption of the watermelon and contribute to improving the competitiveness of watermelon industry in Korea. Also, it is expected that this study will be used as a very important basis for agricultural big data studies to be conducted in the future and this study will offer watermelon producers and policy-makers practical points helpful in crafting tailor-made marketing strategies.

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF