• Title/Summary/Keyword: Key size

Search Result 1,797, Processing Time 0.032 seconds

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

Lattice based Microstructure Evolution Model for Monte Carlo Finite Element Analysis of Polycrystalline Materials (격자식 미세구조 성장 모델을 이용한 다결정 박막 소재의 유한 요소 해석)

  • 최재환;김한성;이준기;나경환
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • The mechanical properties of polycrystalline thin-films, critical for Micro-Electro-Mechanical Systems (MEMS) components, are known to have the size effect and the scatter in the length scale of microns by the numbers of intensive investigation by experiments and simulations. So, the consideration of the microstructure is essential to cover these length scale effects. The lattice based stochastic model for the microstructure evolution is used to simulate the actual microstructure, and the fast and reliable algorithm is described in this paper. The kinetics parameters, which are the key parameters for the microstructure evolution based on the nucleation and growth mechanism, are extracted from the given micrograph of a polycrystalline material by an inverse method. And the method is verified by the comparison of the quantitative measures, the number of grains and the grain size distribution, for the actual and simulated microstructures. Finite element mesh is then generated on this lattice based microstructure by the developed code. And the statistical finite element analysis is accomplished for selected microstructure.

Generation of Janus particles smaller than 10-${\mu}$m in diameter (직경 10-${\mu}$m 이하의 야누스 입자 생성)

  • Ahn, Sang-Hoon;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.679-682
    • /
    • 2008
  • The particle which has two different characteristics on both sides is called Janus particle which is emerging as a key material in microscale transport systems. For example, if one hemisphere has polarity and the other does not, then nonpolar sides would attract each other so that a complex cluster is formed. Thus, this fascinating material can be used as an element of twisting ball panel display, complex micro-scale clusters, drug delivery unit, and active detecting beads. The keywords in developing Janus particle are size and uniformity. Former researches solved uniformity but downsizing still remains a problem. There are three methods to generate small size particles in microchannels: co-flowing, cross-flowing, and elongational flows. In this research, we generate Janus particles smaller than 10-${\mu}$m in diameter using elongational flow in microchannels. And we use UV initiator with Hydrogen UV source to solidify micro size particles. One hemisphere of the particle is coated with rhodamin for visualization.

  • PDF

Experimental and numerical study on energy absorption of lattice-core sandwich beam

  • Taghipoor, Hossein;Noori, Mohammad Damghani
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.135-147
    • /
    • 2018
  • Quasi-static three-point bending tests on sandwich beams with expanded metal sheets as core were conducted. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLCIT and the results were thoroughly compared with the experimental results. A parametric analysis was performed using a Box-Behnken design (BBD) for the design of experiments (DOE) techniques and a finite element modeling. Then, the influence of the core layers number, size of the cell and, thickness of the substrates was investigated. The results showed that the increase in the size of the expanded metal cell in a reasonable range was required to improve the performance of the structure under bending collapse. It was found that core layers number and size of the cell was key factors governing the quasi-static response of the sandwich beams with lattice cores.

ELECTRICAL IMPEDANCE IMAGING FOR SEARCHING ANOMALIES

  • Ohin Kwon;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.459-485
    • /
    • 2001
  • The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.

  • PDF

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

Image Steganography to Hide Unlimited Secret Text Size

  • Almazaydeh, Wa'el Ibrahim A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.73-82
    • /
    • 2022
  • This paper shows the hiding process of unlimited secret text size in an image using three methods: the first method is the traditional method in steganography that based on the concealing the binary value of the text using the least significant bits method, the second method is a new method to hide the data in an image based on Exclusive OR process and the third one is a new method for hiding the binary data of the text into an image (that may be grayscale or RGB images) using Exclusive and Huffman Coding. The new methods shows the hiding process of unlimited text size (data) in an image. Peak Signal to Noise Ratio (PSNR) is applied in the research to simulate the results.

Security Analysis of Light-weight Block Cipher mCrypton Suitable for Ubiquitous Computing Environment (유비쿼터스 환경에 적합한 경량 블록암호 mCrypton에 대한 안전성 분석)

  • Lee, Chang-Hoon;Lee, Yu-Seop;Sung, Jae-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.644-652
    • /
    • 2009
  • New communication environments such as USN, WiBro and RFID have been realized nowadays. Thus, in order to ensure security and privacy protection, various light-weight block ciphers, e.g., mCrypton, HIGHT, SEA and PRESENT, have been proposed. The block cipher mCrypton, which is a light-weight version of Crypton, is a 64-bit block cipher with three key size options (64 bits, 96 bits, 128 bits). In this paper we show that 8-round mCrypton with 128-bit key is vulnerable to related-key rectangle attack. It is the first known cryptanalytic result on mCrypton. We first describe how to construct two related-key truncated differentials on which 7-round related-key rectangle distinguisher is based and then exploit it to attack 8-round mCrypton. This attack requires $2^{45.5}$dada and $2^{45.5}$time complexities which is faster than exhaustive key search.

  • PDF

Branched-chain Amino Acids Reverse the Growth of Intrauterine Growth Retardation Rats in a Malnutrition Model

  • Zheng, Chuan;Huang, Chengfei;Cao, Yunhe;Wang, Junjun;Dong, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1495-1503
    • /
    • 2009
  • This experiment was conducted to determine the effect of dietary supplementation with BCAA (branched-chain amino acids: leucine, isoleucine and valine) on improving the growth of rats in a malnutritional IUGR (Intrauterine Growth Retardation) model, which was established by feeding restriction. In the experimental treatment, rats were fed purified diets supplemented with BCAA (mixed) during the whole gestation period, while arginine and alanine supplementation were set as the positive and negative control group, respectively. The results showed that, compared to the effect of alanine, BCAA reversed IUGR by increasing the fetus weights by 18.4% and placental weights by 18.0% while fetal numbers were statistically increased. Analysis of gene and protein expression revealed that BCAA treatment increased embryonic liver IGF-I expression; the uterus expressed higher levels of estrogen receptor-$\alpha$ (ER-$\alpha$) and progesterone receptor (PR), and the placenta expressed higher levels of IGF-II. Amino acid analysis of dam plasma revealed that BCAA supplementation effectively enhanced the plasma BCAA levels caused by the feed restriction. BCAA also enhanced the embryonic liver gluconeogenesis by augmenting the expression of two key enzymes, namely fructose-1,6-biphosphatase (FBP) and phosphoenolpyruvate carboxykinase (PEPCK). In conclusion, supplementation of BCAA increased litter size, embryonic weight and litter embryonic weight by improving the dam uterus and placental functions as well as increasing gluconeogenesis in the embryonic liver, which further provided energy to enhance the embryonic growth.

Design of Encryption/Decryption Core for Block Cipher Camellia (Camellia 블록 암호의 암·복호화기 코어 설계)

  • Sonh, Seungil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.786-792
    • /
    • 2016
  • Camellia was jointly developed by Nippon Telegraph and Telephone Corporation and Mitsubishi Electric Corporation in 2000. Camellia specifies the 128-bit message block size and 128-, 192-, and 256-bit key sizes. In this paper, a modified round operation block which unifies a register setting for key schedule and a conventional round operation block is proposed. 16 ROMs needed for key generation and round operation are implemented using only 4 dual-port ROMs. Due to the use of a message buffer, encryption/decryption can be executed without a waiting time immediately after KA and KB are calculated. The suggested block cipher Camellia algorithm is designed using Verilog-HDL, implemented on Virtex4 device and operates at 184.898MHz. The designed cryptographic core has a maximum throughput of 1.183Gbps in 128-bit key mode and that of 876.5Mbps in 192 and 256-bit key modes. The cryptographic core of this paper is applicable to security module of the areas such as smart card, internet banking, e-commerce and satellite broadcasting.