• Title/Summary/Keyword: Key size

Search Result 1,797, Processing Time 0.026 seconds

Design of an HIGHT Processor Employing LFSR Architecture Allowing Parallel Outputs (병렬 출력을 갖는 LFSR 구조를 적용한 HIGHT 프로세서 설계)

  • Lee, Je-Hoon;Kim, Sang-Choon
    • Convergence Security Journal
    • /
    • v.15 no.2
    • /
    • pp.81-89
    • /
    • 2015
  • HIGHT is an 64-bit block cipher, which is suitable for low power and ultra-light implementation that are used in the network that needs the consideration of security aspects. This paper presents a key scheduler that employs the presented LFSR and reverse LFSR that can generate four outputs simultaneously. In addition, we construct new key scheduler that generates 4 subkey bytes at a clock since each round block requires 4 subkey bytes at a time. Thus, the entire HIGHT processor can be controlled by single system clock with regular control mechanism. We synthesize the HIGHT processor using the VHDL. From the synthesis results, the logic size of the presented key scheduler can be reduced as 9% compared to the counterpart that is employed in the conventional HIGHT processor.

Preliminary Study on Soft Keyboard with Recommendation for Mobile Device (모바일 단말기를 위한 추천 소프트 키보드)

  • Hwang, Kitae;Lee, Jae-Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.137-145
    • /
    • 2013
  • Recently most mobile devices have soft keyboards on their LCD touch screens. Because of the tiny size of the touch screen of the soft keyboard, adjacent keys are mistakenly typed. Also utilizing a key for multiple key inputs causes key type errors. In this paper, we proposed an algorithm to recommend proper words to the user while the user continues to type keys, which helps to easily correct key type errors. In addition, we presented a soft keyboard called MissLess which implemented the recommendation algorithm. We evaluated recommendation performance of MissLess keyboard through experiments by using 3 test sets. The test results showed that the success ratio of recommendation reached up to about 90% although there were some differences between results. However it is needed to be considered that we recommended 4 words for an input word in this experiments.

Microwave-Assisted Synthesis of Flower-like and Plate-like CuO Nanopowder and Their Photocatalytic Activity for Polluted Lake Water

  • Xu, Ling;Xu, Hai-Yan;Wang, Feng;Zhang, Feng-Jun;Meng, Ze-Da;Zhao, Wei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.151-154
    • /
    • 2012
  • Flower-like and plate-like CuO nanopowder has been successfully synthesized using a facile microwave-assisted synthetic route. The morphology and size of the final products strongly depended on microwave power. The phase, structures and morphologies of the as-prepared products were investigated in detail by BET surface area analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). In addition, the chemical oxygen demand of polluted lake water was employed for characterization of these new photocatalysts. The results showed correlations between the morphology of CuO micro-crystals and their catalytic properties.

Numerical study on heterogeneous behavior of fine particle growth

  • FAN, Fengxian;YANG, Linjun;Yuan, Zhulin;Yan, Jinpei;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.171-178
    • /
    • 2009
  • $PM_{2.5}$ is one of critical air pollutants due to its high absorbability of heavy metallic fumes, PAH and bacillary micro organisms. Such a fine particulate matter is often formed through various nucleation processes including condensation. This study attempts to find the nucleation behaviors of $PM_{2.5}$ arisen from coal power stations using a classical heterogeneous Fletcher's theory. The numerical simulation by C-language could approximate the nucleation process of $PM_{2.5}$ from water vapor, of which approach revealed the required energy for embryo formation and embryo size and nucleation rate. As a result of the calculation, it was found that wetting agents could affect the particle nucleation in vapor condensation. In particular, critical contact angle relates closely with the vapor saturation. Particle condensation could be reduced by lowering the angles. The wetting agents aid to decrease the contact angle and surface tensions, thereby may contribute to save the formation energy.

  • PDF

A High-sensitivity Passive Magnetic Transducer Based on PZT Plates and a Fe-Ni Fork Substrate

  • Li, Ping;Wen, Yumei;Jia, Chaobo;Li, Xinshen
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • This paper proposes a magnetoelectric (ME) composite transducer structure consisting of a magnetostrictive H-type Fe-Ni fork substrate and piezoelectric PZT plates. The fork composite structure has a higher ME voltage coefficient compared to other ME composite structures due to the higher quality (Q) factor. The ME sensitivity of the fork structure reaches 12 V/Oe (i.e., 150 V/cm Oe). The fork composite with two PZT plates electrically connected in series exhibits over 5 times higher ME voltage coefficient than the output of the rectangle structure in the same size. The experiment shows the composite of a Fe-Ni fork substrate and PZT plates has a significantly enhanced ME voltage coefficient and a higher ME sensitivity relative to the prior sandwiched composite laminates. By the use of a lock-in amplifier with 10 nV resolution, this transducer can detect a weak magnetic field of less than $10^{-12}$ T. This transducer can also be designed for a magnetoelectric energy harvester due to its passive high-efficiency ME energy conversion.

A Study on the Trend of World Traditional Medicine and Key Area of Traditional Korean Medicine(TKM) R&D (세계 전통의학 동향과 주요 한의학 R&D 분야에 관한 연구)

  • Song, Sung-Hwan;Choi, Ji-Ae
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • The medical and healthy paradigm is changing by various reasons such as improving of life quality, the limit of western medicine, demographic changes and so on. And the demand, interest and market size of traditional medicine(TM) and complementary and alternative medicine(CAM) are increasing continuously and there is a good traditional medicine called TKM(Traditional Korean Medicine) in Korea. TKM have differentiated characteristics like nature-friendly, systematic, preventive and personalized medicine from western medicine. TKM with these characteristics have possibility to increase national competitiveness and contribute to growth of economy. At this time, it is necessary to select key area of TKM R&D to increase competitiveness of TKM and to create new growth engine. In this paper, we suggest key area of TKM R&D through SWOT analysis, the analysis of world traditional medicine and expert's counsel. As a result, 3 key area and 10 specific fields of TKM R&D was selected, which they are 'the standardization for TKM technology and technique', 'the development of generic technology based on TKM' and 'the establishment of infrastructure for TKM information and material'. This study may contribute to make plan for TKM research and policy such as TKM middle and long term plan and TKM promotion plan.

Assesment of Protected Mt. Seorak Areas in Korea Applied by the Key Biodiversity Areas(KBAs) (중요생물다양성지역(KBAs) 기준 적용을 통한 설악산 보호구역 평가)

  • Sung, Jung-Won;Kang, Shin-Gu;Kim, Keun-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.37-48
    • /
    • 2020
  • This study was aimed to design core areas applied by the global conservation criteria to promote the public awareness to the protected areas and the value cognition of the Key Biodiversity Areas (KBAs), targeting the Mt Seorak, according to the designation of globally important biodiversity areas. As a method for carrying out this study, the biota were cataloged through literature reviews and field trips. With applied by the Global Red List criteria of the International Union for Conservation of Nature (IUCN), only nine species were categorized in the studied area; plants were classified into six species as follows: Megaleranthis saniculifolia ohwi, Bupleurum euphorbioides Nakai, Hanabusaya asiatica Nakai, Thuja koraiensis Nakai, Leontopodium leiolepis Nakai, Androsace cortusaefolia Nakai, fish was classified one species as follow: Pungitius sinensis Tanaka, and the mammal was classified as two species as follows: Hydropotes inermis, Naemorhedus caudatus. According to the occupation area (EoO, Extent of Occurrence) and Minimum Viable Population(MVP), the size of protected area was 234.56㎢ for plants, 235.07㎢ for mammals, and 0.14㎢ for fish, and the Key Biodiversity Area (KBA) of Mt. Seolak suggested as 286.72㎢.

Sensing properties of optical fiber sensor to ultrasonic guided waves

  • Zhou, Wensong;Li, Hui;Dong, Yongkang;Wang, Anbang
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.471-484
    • /
    • 2016
  • Optical fiber sensors have been proven that they have the potential to detect high-frequency ultrasonic signals, in structural health monitoring field which generally refers to acoustic emission signals from active structural damages and guided waves excited by ultrasonic actuators and propagating in waveguide. In this work, the sensing properties of optical fiber sensors based on Mach-Zehnder interferometer were investigated in the metal plate. Analytical formulas were conducted first to explore the parameters affecting its sensing performances. Due to the simple and definable frequency component, the Lamb wave excited by the piezoelectric wafer was employed to study the sensitivity of the proposed optical fiber sensors with respect to the frequency, rather than the acoustic emission signals. In the experiments, according to above investigations, spiral shape optical fiber sensors with different size were selected to increase their sensitivity. Lamb waves were excited by a circular piezoelectric wafer, while another piezoelectric wafer was used to compare their voltage responses. Furthermore, by changing the excitation frequency, the tuning frequency characteristic of the proposed optical fiber sensor was also investigated experimentally.

Dynamic response of underground box structure subjected to explosion seismic wave

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Fan, Pengxian;Feng, Shufang
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.669-680
    • /
    • 2016
  • In this paper, the underground box structure is discretized as a system with limited freedoms, and the explosion seismic wave is regarded as series of dynamic force acting on the lumped masses. Based on the local deformation theory, the elastic resistances of the soil are simplified as the effects of numbers of elastic chain-poles. Matrix force method is adopted to analyze the deformation of the structure in elastic half space. The structural dynamic equations are established and by solving these equations, the axial force, the moment and the displacement of the structure are all obtained. The influences of size ratio, the incident angle and the rock type on the dynamic response of the underground box structure are all investigated through a case study by using the proposed method.

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.