• Title/Summary/Keyword: Key criterion

Search Result 235, Processing Time 0.02 seconds

Generalized Stability Criterion for Multi-module Distributed DC System

  • Liu, Fangcheng;Liu, Jinjun;Zhang, Haodong;Xue, Danhong
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.143-155
    • /
    • 2014
  • The stability issues of a multi-module distributed DC power system without current-sharing loop are analyzed in this study. The physical understanding of the terminal characteristics of each sub-module is focused on. All the modules are divided into two groups based on the different terminal property types, namely, impedance (Z) and admittance (Y) types. The equivalent circuits of each group are established to analyze the stability issues, and the mathematical equations of the equivalent circuits are derived. A generalized criterion for multi-module distributed systems is proposed based on the stability criterion in a cascade system. The proposed criterion is independent of the power flow direction.

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

VoIP-Based Voice Secure Telecommunication Using Speaker Authentication in Telematics Environments (텔레매틱스 환경에서 화자인증을 이용한 VoIP기반 음성 보안통신)

  • Kim, Hyoung-Gook;Shin, Dong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • In this paper, a VoIP-based voice secure telecommunication technology using the text-independent speaker authentication in the telematics environments is proposed. For the secure telecommunication, the sender's voice packets are encrypted by the public-key generated from the speaker's voice information and submitted to the receiver. It is constructed to resist against the man-in-the middle attack. At the receiver side, voice features extracted from the received voice packets are compared with the reference voice-key received from the sender side for the speaker authentication. To improve the accuracy of text-independent speaker authentication, Gaussian Mixture Model(GMM)-supervectors are applied to Support Vector Machine (SVM) kernel using Bayesian information criterion (BIC) and Mahalanobis distance (MD).

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion

  • Chen, Zexiang;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.445-454
    • /
    • 2020
  • Structural damage identification (SDI) is a crucial step in structural health monitoring. However, some of the existing SDI methods cannot provide enough identification accuracy and efficiency in practice. A novel whale optimization algorithm (WOA) based method is proposed for SDI by weighting modal data and flexibility assurance criterion in this study. At first, the SDI problem is mathematically converted into a constrained optimization problem. Unlike traditional objective function defined using frequencies and mode shapes, a new objective function on the SDI problem is formulated by weighting both modal data and flexibility assurance criterion. Then, the WOA method, due to its good performance of fast convergence and global searching ability, is adopted to provide an accurate solution to the SDI problem, different predator mechanisms are formulated and their probability thresholds are selected. Finally, the performance of the proposed method is assessed by numerical simulations on a simply-supported beam and a 31-bar truss structures. For the given multiple structural damage conditions under environmental noises, the WOA-based SDI method can effectively locate structural damages and accurately estimate severities of damages. Compared with other optimization methods, such as particle swarm optimization and dragonfly algorithm, the proposed WOA-based method outperforms in accuracy and efficiency, which can provide a more effective and potential tool for the SDI problem.

Structural damage identification based on transmissibility assurance criterion and weighted Schatten-p regularization

  • Zhong, Xian;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.771-783
    • /
    • 2022
  • Structural damage identification (SDI) methods have been proposed to monitor the safety of structures. However, the traditional SDI methods using modal parameters, such as natural frequencies and mode shapes, are not sensitive enough to structural damage. To tackle this problem, this paper proposes a new SDI method based on transmissibility assurance criterion (TAC) and weighted Schatten-p norm regularization. Firstly, the transmissibility function (TF) has been proved a useful damage index, which can effectively detect structural damage under unknown excitations. Inspired by the modal assurance criterion (MAC), TF and MAC are combined to construct a new damage index, so called as TAC, which is introduced into the objective function together with modal parameters. In addition, the weighted Schatten-p norm regularization method is adopted to improve the ill-posedness of the SDI inverse problem. To evaluate the effectiveness of the proposed method, some numerical simulations and experimental studies in laboratory are carried out. The results show that the proposed method has a high SDI accuracy, especially for weak damages of structures, it can precisely achieve damage locations and quantifications with a good robustness.

A secondary development based on the Hoek-Brown criterion for rapid numerical simulation prediction of mountainous tunnels in China

  • Jian Zhou;Xinan Yang;Zhi Ding
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.69-86
    • /
    • 2023
  • To overcome the dilemma of the [BQ] method's inability to predict mountain tunnel support loads, this study is based on the Hoek-Brown criterion and previous results to obtain the connection equations from GSI scores to each parameter of the Hoek-Brown criterion and the link between the [BQ] scores and the GSI system. The equations were embedded in the Hoek-Brown criterion of FLAC6.0 software to obtain tunnel construction forecasts without destroying the in-situ stratigraphy. The feasibility of the secondary development of the Hoek-Brown criterion was verified through comparative analysis with field engineering measurements. If GSI > 45 with a confining pressure of less than 10 MPa, GSI has little effect on the critical softening factor while we should pay attention to the parameter of confining pressure when GSI < 45. The design values for each parameter are closer to the FLAC3D simulation results and the secondary development of the Hoek-Brown criterion meets the design objectives. If the Class V surrounding rock is thinned with shotcrete or the secondary lining is installed earlier, the secondary lining may act as the main load-bearing structure. The study may provide ideas for rapid prediction of mountainous tunnels in China.

Robustness Analysis and Improvement on Transformed-key Asymmetric Watermarking System (변환키 비대칭 워터마킹 시스템의 강인성 분석 및 개선)

  • Kim, Nam-Jin;Choi, Doo-Seop;Song, Won-Seok;Choi, Hyuk;Kim, Tae-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.119-126
    • /
    • 2010
  • In this paper, we analyze the robustness of transformed-key asymmetric watermarking system and show its improvement by proposing a new detection method. Based on the assumption that the transformed-key asymmetric watermarking system is under the threat of subtraction attack, we first propose the criterion for the detection performance of the watermarking system and analyze the optimum condition on the system. Next, a new detection method is proposed to improve the detection performance of the system based on the criterion. The proposed improvement makes the system robust to not only subtraction attack but also Wu's attack.

Measures for the Failure Evaluation of SNF Cladding During the Transportation

  • Noh, J.S.;Kim, H.A.;Kim, T.W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.105-106
    • /
    • 2018
  • It is important to set up a reasonable failure criterion for cladding, because being able to determine the cladding integrity during transportation is essential for the evaluation of SNF transportation system. There are a few of measures which can be used as a failure criterion for cladding subjected to its specific failure mode. Therefore, to select and to use appropriate failure criterion measures, i.e. strain(UE), $K_{IC}$, and CSED would be a key in evaluating the cladding integrity during transportation with every aspects. In order to justify and quantify that criterion properly, various experiments for the mechanical properties of the claddings with different conditions shall be implemented, which data will enable to justify the failure criteria proposed.

  • PDF