• Title/Summary/Keyword: Key Recovery Attack

Search Result 36, Processing Time 0.023 seconds

Key Recovery Algorithm of Erroneous RSA Private Key Bits Using Generalized Probabilistic Measure (일반화된 확률 측도를 이용하여 에러가 있는 RSA 개인키를 복구하는 알고리즘)

  • Baek, Yoo-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1089-1097
    • /
    • 2016
  • It is well-known that, if additional information other than a plaintext-ciphertext pair is available, breaking the RSA cryptosystem may be much easier than factorizing the RSA modulus. For example, Coppersmith showed that, given the 1/2 fraction of the least or most significant bits of one of two RSA primes, the RSA modulus can be factorized in a polynomial time. More recently, Henecka et. al showed that the RSA private key of the form (p, q, d, $d_p$, $d_q$) can efficiently be recovered whenever the bits of the private key are erroneous with error rate less than 23.7%. It is notable that their algorithm is based on counting the matching bits between the candidate key bit string and the given decayed RSA private key bit string. And, extending the algorithm, this paper proposes a new RSA private key recovery algorithm using a generalized probabilistic measure for measuring the consistency between the candidate key bits and the given decayed RSA private key bits.

An analysis on the security of the 3GPP MAC algorithm (3GPP MAC 알고리즘 안전성 분석)

  • 홍도원;신상욱;강주성;이옥연
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.2
    • /
    • pp.59-65
    • /
    • 2001
  • 3GPP proposed a variant CBC-MAC based on the block cipher KASUMI to provide the data integrity over a radio access link. We have studied deeply the Knudsen and Mitchell\`s attack. In this paper we proposed a definite performing algorithm of the Knudsen and Mitchell\`s alack and compute the success probability and complexity of that algorithm. Moreover We also analyze a security of 3GPP-MAC comparing with the original CBC-MAC.

PingPong 256 shuffling method with Image Encryption and Resistance to Various Noise (이미지 암호화 및 다양한 잡음에 내성을 갖춘 PingPong 256 Shuffling 방법)

  • Kim, Ki Hwan;Lee, Hoon Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1507-1518
    • /
    • 2020
  • High-quality images have a lot of information, so sensitive data is stored by encryption for private company, military etc. Encrypted images can only be decrypted with a secret key, but the original data cannot be retained when attacked by the Shear attack and Noise pollution attack techniques that overwrite some pixel data with arbitrary values. Important data is the more necessary a countermeasure for the recovery method against attack. In this paper, we propose a random number generator PingPong256 and a shuffling method that rearranges pixels to resist Shear attack and Noise pollution attack techniques so that image and video encryption can be performed more quickly. Next, the proposed PingPong256 was examined with SP800-22, tested for immunity to various noises, and verified whether the image to which the shuffling method was applied satisfies the Anti-shear attack and the Anti-noise pollution attack.

MILP-Aided Division Property and Integral Attack on Lightweight Block Cipher PIPO (경량 블록 암호 PIPO의 MILP-Aided 디비전 프로퍼티 분석 및 인테그랄 공격)

  • Kim, Jeseong;Kim, Seonggyeom;Kim, Sunyeop;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.875-888
    • /
    • 2021
  • In this paper, we search integral distinguishers of lightweight block cipher PIPO and propose a key recovery attack on 8-round PIPO-64/128 with the obtained 6-round distinguishers. The lightweight block cipher PIPO proposed in ICISC 2020 is designed to provide the efficient implementation of high-order masking for side-channel attack resistance. In the proposal, various attacks such as differential and linear cryptanalyses were applied to show the sufficient security strength. However, the designers leave integral attack to be conducted and only show that it is unlikely for PIPO to have integral distinguishers longer than 5-round PIPO without further analysis on Division Property. In this paper, we search integral distinguishers of PIPO using a MILP-aided Division Property search method. Our search can show that there exist 6-round integral distinguishers, which is different from what the designers insist. We also consider linear operation on input and output of distinguisher, respectively, and manage to obtain totally 136 6-round integral distinguishers. Finally, we present an 8-round PIPO-64/128 key recovery attack with time complexity 2124.5849 and memory complexity of 293 with four 6-round integral distinguishers among the entire obtained distinguishers.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Security Analysis of MAC Algorithm using Block Cipher (블록 암호 알고리즘을 애용한 MAC 분석)

  • Seo Chang-Ho;Yun Bo-Hyun;Maeng Sung-Reol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.39-47
    • /
    • 2005
  • This paper proposes and analyzes the MAC(Message Authentication Code) algorithm that is used for the transition integrity and the entity authentication of message. The MAC algorithm uses the DES algorithm which has 64-bit block and 56-bit key and we compare the security according to 64-bit and 32-bit length of MAC value. Moreover, we use the SEED algorithm which has 128-bit block and 128-bit key and compare the security according to 128-bit and 64-bit length of MAC value. We analyze the security the forgery attack according to length of message and length of MAC value. this paper, a coarse-to-fine optical flow detection method is proposed. Provided that optical flow gives reliable approximation to two-dimensional image motion, it can be used to recover the three-dimensional motion. but usually to get the reliable optical flows are difficult. The proposed algorithm uses Horn's algorithm (or detecting initial optical flow, then Thin Plate Spline is introduced to warp a image frame of the initial optical flow to the next image frame. The optical flow for the warped image frame is again used iteratively until the mean square error between two image sequence frames is lowered. The proposed method is experimented for the real moving Picture image sequence. The proposed algorithm gives dense optical flow vectors.

  • PDF

SE-PKI Key Recovery system with multiple escrow agents (다수의 위탁 기관 참여가 가능한 SE-PKI 키 복구 시스템)

  • 유희종;최희봉;오수현;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 2001
  • In 1998, A. Young and M. Yung introduced the concept of ARC that conjugates functionalities of a typical PKI with the ability to escrow privte keys of the system users. Also in 1999, P. Paillier and M. Yung proposed a new notion - called SE-PKI -which presents other additional advantages beyond ARC. But SE-PKI system uses only one escrow agent. The storage of users secret information at a single agent can make it significant point of attack and arouse controversy about invasion of privacy. This paper presents SE-PKI key recovery system that multiple escrow agents can participate in it. Also, in our system, escrow agents can\`t recover user\`s ciphertext.

Side Channel Attacks on SIMON Family with Reduced Masked Rounds (축소 마스킹이 적용된 경량 블록 암호 알고리즘 SIMON 패밀리에 대한 부채널 공격)

  • Kim, Jihun;Hong, Kiwon;Kim, Soram;Cho, Jaehyung;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.923-941
    • /
    • 2017
  • A side-channel attack is a method of attacking a cipher based on physical information of a cryptographic device. The masking method, which is a typical method overcoming this attack, is a method of calculating an arbitrary masking value at the round intermediate value through rounds. Thus, it is difficult to guess the intermediate value by the side-channel attack, but if the masking operation is applied to all rounds of the encryption algorithm, the encryption process may become overloaded. Therefore, it is practical to use a reduced-round masking technique that applies a masking technique to only a part of the cipher for lightweight equipment such as Internet of Things(IoT) and wearable devices. In this paper, we describe a Hamming weight filtering for SIMON family with reduced-round masking technique and it is shown that first round key recovery is possible through actual programming.

Importance-Performance Analysis (IPA) of Cyber Security Management: Focused on ECDIS User Experience

  • Park, Sangwon;Chang, Yeeun;Park, Youngsoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • The mandatory installation of the ECDIS (Electronic Chart Display and Information System) became an important navigational equipment for navigation officer. In addition, ECDIS is a key component of the ship's digitalization in conjunction with various navigational equipment. Meanwhile, cyber-attacks emerge as a new threat along with digitalization. Damage caused by cyber-attacks is also reported in the shipping sector, and IMO recommends that cybersecurity guidelines be developed and included in International Security Management (ISM). This study analyzed the cybersecurity hazards of ECDIS, where various navigational equipment are connected. To this end, Importance-Performance Analysis (IPA) was conducted on navigation officer using ECDIS. As a result, the development of technologies for cyber-attack detection and prevention should be priority. In addition, policies related to 'Hardware and Software upgrade', 'network access control', and 'data backup and recovery' were analyzed as contents to be maintained. This paper is significant in deriving risk factors from the perspective of ECDIS users and analyzing their priorities, and it is necessary to analyze various cyber-attacks that may occur on ships in the future.

Solving the Discrete Logarithm Problem for Ephemeral Keys in Chang and Chang Password Key Exchange Protocol

  • Padmavathy, R.;Bhagvati, Chakravarthy
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • The present study investigates the difficulty of solving the mathematical problem, namely the DLP (Discrete Logarithm Problem) for ephemeral keys. The DLP is the basis for many public key cryptosystems. The ephemeral keys are used in such systems to ensure security. The DLP defined on a prime field $Z^*_p of random prime is considered in the present study. The most effective method to solve the DLP is the ICM (Index Calculus Method). In the present study, an efficient way of computing the DLP for ephemeral keys by using a new variant of the ICM when the factors of p-1 are known and small is proposed. The ICM has two steps, a pre-computation and an individual logarithm computation. The pre-computation step is to compute the logarithms of a subset of a group and the individual logarithm step is to find the DLP using the precomputed logarithms. Since the ephemeral keys are dynamic and change for every session, once the logarithms of a subset of a group are known, the DLP for the ephemeral key can be obtained using the individual logarithm step. Therefore, an efficient way of solving the individual logarithm step based on the newly proposed precomputation method is presented and the performance is analyzed using a comprehensive set of experiments. The ephemeral keys are also solved by using other methods, which are efficient on random primes, such as the Pohlig-Hellman method, the Van Oorschot method and the traditional individual logarithm step. The results are compared with the newly proposed individual logarithm step of the ICM. Also, the DLP of ephemeral keys used in a popular password key exchange protocol known as Chang and Chang are computed and reported to launch key recovery attack.