• 제목/요약/키워드: Key Gas Method

검색결과 188건 처리시간 0.028초

복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가 (Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant)

  • 박희경;정시우;최유정;이민철
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출 (S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data)

  • 김병엽;변중무
    • 자원환경지질
    • /
    • 제44권3호
    • /
    • pp.229-238
    • /
    • 2011
  • 가스하이드레이트 부존량 평가에 있어서 해당 부존 지역의 S파 속도 정보는 암상과 공극유체의 정보를 파악하는데 결정적인 역할을 한다. 만일 퇴적층 내에 가스하이드레이트가 존재한다면 이 층에서의 P파 속도와 S파 속도는 동시에 증가하게 되며, 그 하부에 자유가스가 존재하는 경우 P파의 속도는 감소한다. 하지만 S파의 경우 공극을 채우고 있는 유체의 영향을 받지 않고 순수하게 매질을 통해서 진행하므로 하이드레이트 층의 하부에 자유가스층이 존재한다고 해도 그 속도가 변하지 않거나 오히려 매질의 영향으로 그 속도가 증가한다. 본 연구에서는 이러한 특성을 확인하기 위해 울릉분지의 가스하이드레이트 유망지역 중 탄성파 단면상에서 BSR(해저변 모방 반사면)이 강하게 분포하는 한 지점에서 한국지질자원연구원이 2009년 5월에 OBS(해저면 탄성파 기록계)를 이용하여 취득한 해저면 다성분 탄성파 자료를 이용하여 가스하이드레이트 부존 심도 부근의 P파 빛 모드전환 S파의 속도를 구하였다.OBS의 하이드로폰(hydrophone) 성분에 기록된 P파 자료를 이용하여 탄성파 주시 역산법을 수행하여 P파 속도 및 섬도 구조를 도출하였다. 해당지역에 취득한 2차원 반사법 탐사 자료는 기본 전산처리를 통해 구한 탐사지역의 기본 층서모델을 초기모델로 삼았다. 여기에 수평 2성분 지오폰(geophone)에 기록된 자료의 극성 분석을 통해 S파의 에너지가 최대로 모인 radial 성분 단면도를 생성하고 여기서 발췌한 주요 S파 이벤트의 주시를 이용해 포아송 비 정모델링을 수행하여 OBS가 위치한 지점에서의 포아송 비와 S파 속도구조를 최종적으로 도출하였다. 본 연구를 통해 탐사지역의 가스하이드레이트 존재로 인한 BSR 상하부 층의 P파 속도 역전 현상과 P파와는 달리 BSR 상부에서 히부로 갈수록 S파의 속도가 약간 증가하는 경향을 보여 결과적으로 자유가스층의 존재로 인한 BSR 하부에서 포아송 비 감소현상이 뚜렷함을 확인하였다.

Visible Light Communication Method for Personalized and Localized Building Energy Management

  • Jeong, Jin-Doo;Lim, Sang-Kyu;Han, Jinsoo;Park, Wan-Ki;Lee, Il-Woo;Chong, Jong-Wha
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.735-745
    • /
    • 2016
  • The Paris agreement at the 21st Conference of the Parties (COP21) emphasizes the reduction of greenhouse gas emissions and increase in energy consumption in all areas. Thus, an important aspect is energy saving in buildings where the lighting is a major component of the electrical energy consumption. This paper proposes a building energy management system employing visible light communication (VLC) based on LED lighting. The proposed management system has key characteristics including personalization and localization by utilizing such VLC advantages as secure communication through light and location-information transmission. Considering the efficient implementation of an energy-consumption adjustment using LED luminaires, this paper adopts variable pulse position modulation (VPPM) as a VLC modulation scheme with simple controllability of the dimming level that is capable of providing a full dimming range. This paper analyzes the VPPM performances according to variable dimming for several schemes, and proposes a VPPM demodulation architecture based on dimming-factor acquisition, which can obtain an improved performance compared to a 2PPM-based scheme. In addition, the effect of a dimming-factor acquisition error is analyzed, and a frame format for minimizing this error effect is proposed.

지하공기 이용 히트펌프시스템의 망고온실 난방효과 (Heating Effect of Greenhouse Cultivated Mangos by Heat Pump System using Underground Air as Heat Source)

  • 강연구;김영화;유영선;김종구;장재경;이형모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.200.1-200.1
    • /
    • 2011
  • Underground air is a special energy source in Jeju and distributes lava cave, pyroclastic, open joint, and crushing zone. A possible area to utilize underground air is 85% of Jeju except to the nearby area of Sambang Mt. and 25m high coastal area from sea level. In Jeju, underground air is used for heating agricultural facilities such as greenhouse cultivated mangos, Hallbong and mandarin orange, pigsty, mushroom cultivation house, etc. and fertilizing natural $CO_2$ gas by suppling directly into agricultural facilities. But this heating method causes several problem because the underground air has over 90% relative humidity and is inadequate in heating for crops. Mangos are the most widely grown tropical fruit trees and have been cultivated since 1993 in Jeju. In Jeju, the cultivating area is about 20ha and amount of harvest is 275ton/year in 2010. In this study, the heat pump system using underground air as heat source was installed in mangos greenhouse which area is $495m^2$. The capacity of heat pump system and heat storage tank was 10RT, 5ton respectively and heating effect and heating performance of the system were analysed.

  • PDF

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo;Kim, Younghun
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.401-406
    • /
    • 2017
  • Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구 (A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation)

  • 이준;한창석
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

지반공학적 재해 및 산사태 위험도 분석에 관한 연구 (International Research on Geotechnical Risk & Landslide Hazards)

  • 윤길림;윤여원;김홍연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.444-455
    • /
    • 2009
  • Great concerns on geotechnical risk & hazard assessment have been increased due to human and economic damage by natural disasters with recent global climate changes. In this paper, geotechnical problems in particular, landslides which is interested in European countries and North America, were mainly discussed. For these, 18 key topics on geotechnical risk and hazards which had been discussed at the LARAM 2008 workshop in Italy were analyzed after grouping by subjects. Main topic contents consisted of applications such as field measurement, early warning systems, uncertainty analysis of parameters using radar, optical data and statistical theory and so on. And the problems related to analysis of vulnerability and deformation due to earthquakes, investigation of gas zone using seismic reflection data in a landslide area, risk quantification and hazard assessment of landslide movements and multi-dimensional analysis for stability of complex slopes were attracted. Also, there were studies on risk matters of cultural heritage, the blockglide of clayey ground, simulations of debris flows based on GIS, quantification of the failure processes of rock slopes, a meshless method for 3D crack modelling, and finally risk assessment for cryological processes due to global warming.

  • PDF

냉매 R410A를 적용한 실내 열교환기 설계 (Design of an Indoor Heat Exchanger that Apply Refrigerant R410A)

  • 김범찬;박창석;차우호;김성수;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.317-322
    • /
    • 2008
  • The objectives of this paper are to study the effects of thermal and geometric conditions on the performance of indoor heat exchanger with R410A for Gas Engine Driven Heat Pump (GHP) application and to find optimum design conditions of indoor heat exchanger by parametric analysis for the key parameters. In the air side, moisture out of the humid air condenses on the fin surface while the refrigerant (R410A) boils inside the smooth tube. Therefore this study uses Log Mean Enthalpy Difference (LMHD) method to analyze the heat transfer from the humid air to the refrigerant of R410A. The results show that fin pitch and longitudinal pitch have significant effect on the heat exchanger preformance. This study will provide the guideline for optimum design of indoor heat exchanger with R410A for GHP application.

  • PDF

Study on the pressure self-adaptive water-tight junction box in underwater vehicle

  • Huang, Haocai;Ye, Yanying;Leng, Jianxing;Yuan, Zhuoli;Chen, Ying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권3호
    • /
    • pp.302-312
    • /
    • 2012
  • Underwater vehicles play a very important role in underwater engineering. Water-tight junction box (WJB) is one of the key components in underwater vehicle. This paper puts forward a pressure self-adaptive water-tight junction box (PSAWJB) which improves the reliability of the WJB significantly by solving the sealing and pressure problems in conventional WJB design. By redundancy design method, the pressure self-adaptive equalizer (PSAE) is designed in such a way that it consists of a piston pressure-adaptive compensator (PPAC) and a titanium film pressure-adaptive compensator (TFPAC). According to hydro-mechanical simulations, the operating volume of the PSAE is more than or equal to 11.6 % of the volume of WJB liquid system. Furthermore, the required operating volume of the PSAE also increases as the gas content of oil, hydrostatic pressure or temperature difference increases. The reliability of the PSAWJB is proved by hyperbaric chamber tests.

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.