• Title/Summary/Keyword: Key Exchange

Search Result 760, Processing Time 0.023 seconds

Efficient ID-Based Authentication and Key Exchange Protocol (효율적인 ID 기반 인증 및 키 교환 프로토콜)

  • Eom, Jieun;Seo, Minhye;Park, Jong Hwan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1387-1399
    • /
    • 2016
  • In a hyper-connected society realized through IoT-enabled technology, a large amount of data is collected by various devices and is processed to provide new services to users. While communicating through a network, it is essential for devices to execute mutual authentication since users' privacy can be infringed by malicious attackers. ID-based signature enables authentication and key exchange with a unique ID of a device. However, most of the previous ID-based signature schemes based on RSA require an additional step to share parameters for key exchange so that they are not suitable for resource-constrained devices in terms of efficiency. In this paper, we design an efficient ID-based signature and thereby propose an efficient ID-based authentication and key exchange protocol in which sessions for both an authentication and a key exchange are executed simultaneously. In addition, we prove the security of our scheme under the RSA onewayness problem and analyze the efficiency by comparing with the previous schemes.

Mutual Identification and Key Exchange Scheme in Secure Vehicular Communications based on Group Signature (그룹 서명 기반의 차량 네트워크에서 상호 신분 확인 및 세션키 교환 기법)

  • Kim, Dai-Hoon;Choi, Jae-Duck;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • This paper proposes a mutual identification and session key exchange scheme in secure vehicular communication based on the group signature. In VANETs, security requirements such as authentication, conditional privacy, non-repudiation, and confidentiality are required to satisfy various vehicular applications. However, existing VANET security methods based on the group signature do not support a mutual identification and session key exchange for data confidentiality. The proposed scheme allows only one credential to authenticate ephemeral Diffie-Hellman parameters generated every key exchange session. Our scheme provides a robust key exchange and reduces storage and communication overhead. The proposed scheme also satisfies security requirements for various application services in VANETs.

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.

One-round Protocols for Two-Party Authenticated Key Exchange (1-라운드 양자간 키 교환 프로토콜)

  • Jeong, Ik-Rae;Lee, Dong-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.110-118
    • /
    • 2006
  • Cryptographic protocol design in a two-party setting has of tel ignored the possibility of simultaneous message transmission by each of the two parties (i.e., using a duplex channel). In particular, most protocols for two-party key exchange have been designed assuming that parties alternate sending their messages (i.e., assuming a bidirectional half-duplex channel). However, by taking advantage of the communication characteristics of the network it may be possible to design protocols with improved latency. This is the focus of the present work. We present three provably-secure protocols for two-party authenticated key exchange (AKE) which require only a single round. Our first, most efficient protocol provides key independence but not forward secrecy. Our second scheme additionally provides forward secrecy but requires some additional computation. Security of these two protocols is analyzed in the random oracle model. Our final protocol provides the same strong security guarantees as our second protocol, but is proven secure in the standard model. This scheme is only slightly less efficient (from a computational perspective) than the previous ones. Our work provides the first provably- secure one-round protocols for two-party AKE which achieve forward secrecy.

Quorum based Peer to Peer Key Sharing Protocol over Wireless Sensor Networks

  • Yang, Soong-Yeal;Won, Nam-Sik;Kim, Hyun-Sung;Lee, Sung-Woon
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.445-448
    • /
    • 2008
  • The key establishment between nodes is one of the most important issues to secure the communication in wireless sensor networks. Some researcher used the probabilistic key sharing scheme with a pre-shared key pool to reduce the number of keys and the key disclosure possibility. However, there is a potential possibility that some nodes do not have a common share in the key pool. The purpose of this paper is to devise a peer to peer key sharing protocol (PPKP) based on Quorum system and Diffie-Hellman key exchange scheme (DHS). The PPKP establishes a session key by creating a shared key using the DHS and then scrambles it based on Quorum system to secure that. The protocol reduces the number of necessary keys than the previous schemes and could solve the non-common key sharing possibility problem in the probabilistic schemes.

  • PDF

Design of Security Module using Key Exchange Protocol in Digital Contents (키 교환 프로토콜을 이용한 디지털콘텐츠 보호 모듈 설계)

  • 권도윤;이경원;김정호
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.3
    • /
    • pp.40-46
    • /
    • 2003
  • In the paper, designed digital contents security module to check unlawfulness reproduction and distribution of digital contents. This paper applied Diffie-Hellman algorithm that use discrete logarithm and random number as primary for public key application to create encryption key that agree each other through communication channel between DCPS and HOST, and applied Triple DES repeat DES 3 times through 2 different encryption key that is selecting ANSI X9.17 that is key management standard, ISO 8732 and PEM(Privacy-Enhanced Mail) etc. by secondary protection for safe transmission of digital contents in transmission line. Designed security module consist of key exchange module, key derivation module and copy protection processing module. Digital contents security module that design in this thesis checks reproduction and distribution of digital contents by unauthenticated user through user certification function and digital contents encryption function, and protect digital contents transmission line.

  • PDF

A Diffie-Hellman Key Exchange Protocol in the Standard Model (표준 모델에서 안전한 Diffie-Hellman 키 교환 프로토콜)

  • Jeong, Ik-Rae;Kwon, Jeong-Ok;Lee, Dong-Hoon;Hong, Do-Won
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.465-473
    • /
    • 2008
  • The MQV protocol has been regarded as the most efficient authenticated Diffie- Hellman key exchange protocol, and standardized by many organizations including the US NSA. In Crypto 2005, Hugo Krawczyk showed vulnerabilities of MQV to several attacks and suggested a hashed variant of MQV, called HMQV, which provides the same superb performance of MQV and provable security in the random oracle model. In this paper we suggest an efficient authenticated Diffie-Hellman key exchange protocol providing the same functionalities and security of HMQV without random oracles. So far there are no authenticated Diffie-Hellman protocols which are provably secure without using random oracles and achieve the same level of security goals of HMQV efficiently yet.

A Client/Sever Authenticated Key Exchange Protocol using Shared Password (공유 패스워드를 이용한 클라이언트/서버 인증 키 교환 프로토콜)

  • 류은경;윤은준;유기영
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.252-258
    • /
    • 2004
  • In this paper, we propose a new authenticated key exchange protocol in which client and sever can mutually authenticate and establish a session key over an insecure channel using only a human memorable password. The proposed protocol is based on Diffie-Hellman scheme and has many of desirable security attributes: It resists off-line dictionary attacks mounted by either Passive or active adversaries over network, allowing low-entropy Passwords to be used safely. It also offers perfect forward secrecy, which protects past sessions when passwords are compromised. In particular, the advantage of our scheme is that it is secure against an impersonation attack, even if a server's password file is exposed to an adversary. The proposed scheme here shows that it has better performance when compared to the previous notable password-based key exchange methods.

One time password key exchange Authentication technique based on MANET (MANET 기반 원타임 패스워드 키교환 인증기법)

  • Lee, Cheol-Seung;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1367-1372
    • /
    • 2007
  • This paper suggests One-time Password key exchange authentication technique for a strong authentication based on MANET and through identify wireless environment security vulnerabilities, analyzes current authentication techniques. The suggested authentication technique consists of 3 steps: Routing, Registration, and Running. The Routing step sets a safe route using AODV protocol. The Registration and Running step apply the One-time password S/key and the DH-EKE based on the password, for source node authentication. In setting the Session key for safe packet transmission and data encryption, the suggested authentication technique encrypts message as H(pwd) verifiers, performs key exchange and utilizes One time password for the password possession verification and the efficiency enhancement. EKE sets end to end session key using the DH-EKE in which it expounds the identifier to hash function with the modula exponent. A safe session key exchange is possible through encryption of the H(pwd) verifier. The suggested authentication technique requires exponentiation and is applicable in the wireless network environment because it transmits data at a time for key sharing, which proves it is a strong and reliable authentication technique based on the complete MANET.

A Secure Key Exchange Protocol Using Smart Devices for U-healthcare Services (U-헬스케어 서비스에서 스마트 기기들을 활용한 안전한 키 교환 프로토콜)

  • Park, Sullha;Seo, Seung-Hyun;Lee, Sang-Ho
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.323-331
    • /
    • 2017
  • Due to the recent developments of various smart devices, U-healthcare services using these appliances has increased. However, the security of U-healthcare services is a very important issue since healthcare services contain highly sensitive and private personal health information. In order to handle the security issues, the functionality of encrypting medical information must be provided, and an encryption key exchange method is necessary. In this paper, we propose a key exchange protocol by utilizing smart devices for secure U-healthcare services. The proposed protocol has been designed based on the elliptic curve based public key cryptography, providing high level security for smart devices by using short keys. Moreover, in order to strengthen user authentication and security, a smart watch is used as a complementary device, whenever the key exchange protocol is performed.