• Title/Summary/Keyword: Key Agreement Scheme

Search Result 108, Processing Time 0.022 seconds

Reducing Rekeying Time Using an Integrated Group Key Agreement Scheme

  • Gu, Xiaozhuo;Zhao, Youjian;Yang, Jianzu
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.418-428
    • /
    • 2012
  • With the requirement for providing multiple levels of access control for group members, many group key management schemes designed for hierarchical access control have been put forward. However, most of these schemes focus on the efficiency of group key establishment and rekeying in centralized environments. This paper proposes an integrated group key agreement (IGK) scheme for contributory environments. The IGK scheme employs the integrated key graph to remove key redundancies existing in single key trees, and reduces key establishment and rekeying time while providing hierarchical access control. Performance analyses and simulations conducted with respect to computation and communication overheads indicate that our proposed IGK scheme is more efficient than the independent group key agreement scheme.

A Provable One-way Authentication Key Agreement Scheme with User Anonymity for Multi-server Environment

  • Zhu, Hongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.811-829
    • /
    • 2015
  • One-way authenticated key agreement protocols, aiming at solving the problems to establish secure communications over public insecure networks, can achieve one-way authentication of communicating entities for giving a specific user strong anonymity and confidentiality of transmitted data. Public Key Infrastructure can design one-way authenticated key agreement protocols, but it will consume a large amount of computation. Because one-way authenticated key agreement protocols mainly concern on authentication and key agreement, we adopt multi-server architecture to realize these goals. About multi-server architecture, which allow the user to register at the registration center (RC) once and can access all the permitted services provided by the eligible servers. The combination of above-mentioned ideas can lead to a high-practical scheme in the universal client/server architecture. Based on these motivations, the paper firstly proposed a new one-way authenticated key agreement scheme based on multi-server architecture. Compared with the related literatures recently, our proposed scheme can not only own high efficiency and unique functionality, but is also robust to various attacks and achieves perfect forward secrecy. Finally, we give the security proof and the efficiency analysis of our proposed scheme.

Identity-Based Multiple Key Agreement Scheme

  • Dehkordi, Massoud Hadian;Alimoradi, Reza
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2392-2402
    • /
    • 2011
  • In order to protect some important information communicated through an insecure network, a common hidden key must be used. One can produce the common hidden key using key agreement protocols; and this helps to have high security in modern data networks. Today, the designers of public key cryptography protocols try to set the public identity of a system's users (like their email addresses) as their public key. This not only makes a cryptographic protocol more efficient but also decreases its cost. These protocols are called "identity-based". In this article, an identity-based multiple key agreement scheme will be presented; this scheme uses the challenge-response method to do the verification. While the number of random values produced in our scheme is the same as other schemes, the number of keys generated in this scheme is much more than what many other key agreement schemes produce,. Therefore, we will have less computational complexities campered with other schems. In this paper, we consider the security of our scheme and consequently, we will show that it satisfies many security conditions such as strong security.

ID-based Tripartite Multiple Key Agreement Protocol Combined with Key Derivation Function (키 유도함수를 결합한 ID 기반 3자 복수키 동의 프로토콜)

  • Lee Sang-Gon;Lee Hoon-Jae
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.133-142
    • /
    • 2006
  • The purpose of the multiple key agreement protocol is to get efficiency in computational and communicational aspects compared to multiple executions of single key agreement protocol. However ID based tripartite multiple key agreement protocols have been proposed, it is reported that they can not resist unknown key-share attack or impersonation attack. How to design a secure and efficient ID-based authenticated tripartite multiple key agreement scheme to prevent all kinds of attacks remains an open problem. This paper proposes a multiple key agreement scheme combing the existing single key agreement protocol with a key derivation function. The proposed scheme can not only increase computational efficiency compared to the existing multiple key agreement protocol, but can ensure security of the proposed schemes by using a security proofed single key agreement protocol and key derivation function.

  • PDF

MULTIPARTY KEY AGREEMENT PROTOCOL BASED ON SYMMETRIC TECHNIQUES

  • Lee, Hyang-Sook;Lee, Young-Ran;Lee, Ju-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.169-179
    • /
    • 2003
  • In this paper, we propose multiparty key agreement protocols by generalizing the Blom's scheme based on 2 variable polynomials. Especially we develop three party and four party key agreement schemes with security. The advantage of the new schemes is to have small demands on storage space.

A New Session Key Agreement Scheme Using Smart Cards (스마트 카드를 이용한 새로운 세션 키 생성 방법)

  • Lee, Jongkook;Jongsoo Jang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.518-520
    • /
    • 2003
  • This paper proposes a new session key agreement scheme which is based on Station-to-station protocol, or STS shortly. We extend key agreement model of STS, to take into account smart cards. Besides, we modify STS to withstand message replaying attack. Security analysis shows our scheme is still secure.

  • PDF

An Improved Authentication and Key Agreement scheme for Session Initial Protocol

  • Wu, Libing;Fan, Jing;Xie, Yong;Wang, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4025-4042
    • /
    • 2017
  • Session initiation protocol (SIP) is a kind of powerful and common protocols applied for the voice over internet protocol. The security and efficiency are two urgent requirements and admired properties of SIP. Recently, Hamed et al. proposed an efficient authentication and key agreement scheme for SIP. However, we demonstrate that Hamed et al.'s scheme is vulnerable to de-synchronization attack and cannot provide anonymity for users. Furthermore, we propose an improved and efficient authentication and key agreement scheme by using elliptic curve cryptosystem. Besides, we prove that the proposed scheme is provably secure by using secure formal proof based on Burrows-Abadi-Needham logic. The comparison with the relevant schemes shows that our proposed scheme has lower computation costs and can provide stronger security.

An Extended Multi-Server-Based User Authentication and Key Agreement Scheme with User Anonymity

  • Li, Chun-Ta;Lee, Cheng-Chi;Weng, Chi-Yao;Fan, Chun-I
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.119-131
    • /
    • 2013
  • With the explosive growth of computer networks, many remote service providing servers and multi-server network architecture are provided and it is extremely inconvenient for users to remember numerous different identities and passwords. Therefore, it is important to provide a mechanism for a remote user to use single identity and password to access multi-server network architecture without repetitive registration and various multi-server authentication schemes have been proposed in recent years. Recently, Tsaur et al. proposed an efficient and secure smart card based user authentication and key agreement scheme for multi-server environments. They claimed that their scheme satisfies all of the requirements needed for achieving secure password authentication in multi-server environments and gives the formal proof on the execution of the proposed authenticated key agreement scheme. However, we find that Tsaur et al.'s scheme is still vulnerable to impersonation attack and many logged-in users' attack. We propose an extended scheme that not only removes the aforementioned weaknesses on their scheme but also achieves user anonymity for hiding login user's real identity. Compared with other previous related schemes, our proposed scheme keeps the efficiency and security and is more suitable for the practical applications.

TinyIBAK: Design and Prototype Implementation of An Identity-based Authenticated Key Agreement Scheme for Large Scale Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2769-2792
    • /
    • 2013
  • In this paper, we propose an authenticated key agreement scheme, TinyIBAK, based on the identity-based cryptography and bilinear paring, for large scale sensor networks. We prove the security of our proposal in the random oracle model. According to the formal security validation using AVISPA, the proposed scheme is strongly secure against the passive and active attacks, such as replay, man-in-the middle and node compromise attacks, etc. We implemented our proposal for TinyOS-2.1, analyzed the memory occupation, and evaluated the time and energy performance on the MICAz motes using the Avrora toolkits. Moreover, we deployed our proposal within the TOSSIM simulation framework, and investigated the effect of node density on the performance of our scheme. Experimental results indicate that our proposal consumes an acceptable amount of resources, and is feasible for infrequent key distribution and rekeying in large scale sensor networks. Compared with other ID-based key agreement approaches, TinyIBAK is much more efficient or comparable in performance but provides rekeying. Compared with the traditional key pre-distribution schemes, TinyIBAK achieves significant improvements in terms of security strength, key connectivity, scalability, communication and storage overhead, and enables efficient secure rekeying.

Pairwise Key Agreement Protocols Using Randomness Re-use Technique (난수 재사용 기법을 이용한 다중 키 교환 프로토콜)

  • Jeong, Ik-Rae;Lee, Dong-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.949-958
    • /
    • 2005
  • In the paper we study key agreement schemes when a party needs to establish a session key with each of several parties, thus having multiple session keys. This situation can be represented by a graph, tailed a key graph, where a vertex represents a party and an edge represents a relation between two parties sharing a session key. graphs to establish all session keys corresponding to all edges in a key graph simultaneously in a single session. A key agreement protocol of a key graph is a natural extension of a two-party key agreement protocol. We propose a new key exchange model for key graphs which is an extension of a two-party key exchange model. using the so-called randomness re-use technique which re-uses random values to make session keys for different sessions, we suggest two efficient key agreement protocols for key graphs based on the decisional Diffie-Hellman assumption, and prove their securities in the key exchange model of key graphs. Our first scheme requires only a single round and provides key independence. Our second scheme requires two rounds and provides forward secrecy. Both are proven secure In the standard model. The suggested protocols are the first pairwise key agreement protocols and more efficient than a simple scheme which uses a two-party key exchange for each necessary key. Suppose that a user makes a session key with n other users, respectively. The simple scheme's computational cost and the length of the transmitted messages are increased by a factor of n. The suggested protocols's computational cost also depends on n, but the length of the transmitted messages are constant.