• Title/Summary/Keyword: Key Agreement Protocol

Search Result 191, Processing Time 0.025 seconds

A Cluster-based Efficient Key Management Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 클러스터 기반의 효율적 키 관리 프로토콜)

  • Jeong, Yoon-Su;Hwang, Yoon-Cheol;Lee, Keon-Myung;Lee, Sang-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • To achieve security in wireless sensor networks(WSN), it is important to be able to encrypt and authenticate messages sent among sensor nodes. Due to resource constraints, many key agreement schemes used in general networks such as Diffie-Hellman and public-key based schemes are not suitable for wireless sensor networks. The current pre-distribution of secret keys uses q-composite random key and it randomly allocates keys. But there exists high probability not to be public-key among sensor nodes and it is not efficient to find public-key because of the problem for time and energy consumption. To remove problems in pre-distribution of secret keys, we propose a new cryptographic key management protocol, which is based on the clustering scheme but does not depend on probabilistic key. The protocol can increase efficiency to manage keys because, before distributing keys in bootstrap, using public-key shared among nodes can remove processes to send or to receive key among sensors. Also, to find outcompromised nodes safely on network, it selves safety problem by applying a function of lightweight attack-detection mechanism.

An Improved Lightweight Two-Factor Authentication and Key Agreement Protocol with Dynamic Identity Based on Elliptic Curve Cryptography

  • Qiu, Shuming;Xu, Guosheng;Ahmad, Haseeb;Xu, Guoai;Qiu, Xinping;Xu, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.978-1002
    • /
    • 2019
  • With the rapid development of the Internet of Things, the problem of privacy protection has been paid great attention. Recently, Nikooghadam et al. pointed out that Kumari et al.'s protocol can neither resist off-line guessing attack nor preserve user anonymity. Moreover, the authors also proposed an authentication supportive session initial protocol, claiming to resist various vulnerability attacks. Unfortunately, this paper proves that the authentication protocols of Kumari et al. and Nikooghadam et al. have neither the ability to preserve perfect forward secrecy nor the ability to resist key-compromise impersonation attack. In order to remedy such flaws in their protocols, we design a lightweight authentication protocol using elliptic curve cryptography. By way of informal security analysis, it is shown that the proposed protocol can both resist a variety of attacks and provide more security. Afterward, it is also proved that the protocol is resistant against active and passive attacks under Dolev-Yao model by means of Burrows-Abadi-Needham logic (BAN-Logic), and fulfills mutual authentication using Automated Validation of Internet Security Protocols and Applications (AVISPA) software. Subsequently, we compare the protocol with the related scheme in terms of computational complexity and security. The comparative analytics witness that the proposed protocol is more suitable for practical application scenarios.

A Client/Sever Authenticated Key Exchange Protocol using Shared Password (공유 패스워드를 이용한 클라이언트/서버 인증 키 교환 프로토콜)

  • 류은경;윤은준;유기영
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.252-258
    • /
    • 2004
  • In this paper, we propose a new authenticated key exchange protocol in which client and sever can mutually authenticate and establish a session key over an insecure channel using only a human memorable password. The proposed protocol is based on Diffie-Hellman scheme and has many of desirable security attributes: It resists off-line dictionary attacks mounted by either Passive or active adversaries over network, allowing low-entropy Passwords to be used safely. It also offers perfect forward secrecy, which protects past sessions when passwords are compromised. In particular, the advantage of our scheme is that it is secure against an impersonation attack, even if a server's password file is exposed to an adversary. The proposed scheme here shows that it has better performance when compared to the previous notable password-based key exchange methods.

A Group Key Management Architecture in Mobile Network Environments (이동네트워크 환경에서의 그룹키 관리구조)

  • 박영호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.89-100
    • /
    • 2002
  • In this paper, we propose a group key management architecture for the secure group communications in mobile netwowrks and authenticated key agreement protocol for this system. Most of existing group key management schemes un certificates based on the public key for the purpose of user authentication and key agreement in secure fashion however, we use the ICPK(Implicitly Certified Public key) to reduce the bandwidth for a certificate exchanging and to improve a computational efficiency. In this architecture, we use two-tier approach to deal with key management where the whole group is divided into two parts; the first is a cell groups consisted of mobile hosts and another is a control group consisted of cell group managers. This approach can provide flexibility of key management such that the affection for a membership change is locally restricted to the cell group which is an autonomous area of the CGM(Cell Group Manager).

Session Key Agreement Protocol for IoT Home Devices using Shadow Passwords (그림자 패스워드를 사용한 IoT 홈 디바이스 사이의 세션키 공유 프로토콜)

  • Jung, Seok Won
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.93-100
    • /
    • 2020
  • Although various home services are developed as increasing the number of home devices with wire and wireless connection, privacy infringement and private information leakage are occurred by unauthorized remote connection. It is almost caused by without of device authentication and protection of transmission data. In this paper, the devices' secret value are stored in a safe memory of a smartphone. A smartphone processes device authentication. In order to prevent leakage of a device's password, a shadow password multiplied a password by the private key is stored in a device. It is proposed mutual authentication between a smartphone and a device, and session key agreement for devices using recovered passwords on SRP. The proposed protocol is resistant to eavesdropping, a reply attack, impersonation attack.

Mutual Authentication and Key Agreement Scheme between Lightweight Devices in Internet of Things (사물 인터넷 환경에서 경량화 장치 간 상호 인증 및 세션키 합의 기술)

  • Park, Jiye;Shin, Saemi;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.707-714
    • /
    • 2013
  • IoT, which can be regarded as an enhanced version of M2M communication technology, was proposed to realize intelligent thing to thing communications by utilizing Internet connectivity. Things in IoT are generally heterogeneous and resource constrained. Also such things are connected with each other over LLN(low power and lossy Network). Confidentiality, mutual authentication and message origin authentication are required to make a secure service in IoT. Security protocols used in traditional IP Networks cannot be directly adopted to resource constrained devices in IoT. Under the respect, a IETF standard group proposes to use lightweight version of DTLS protocol for supporting security services in IoT environments. However, the protocol can not cover up all of very constrained devices. To solve the problem, we propose a scheme which tends to support mutual authentication and session key agreement between devices that contain only a single crypto primitive module such as hash function or cipher function because of resource constrained property. The proposed scheme enhances performance by pre-computing a session key and is able to defend various attacks.

ROSS: Low-Cost Self-Securing VoIP Communication Framework

  • Syafalni, Alfin;Samsudin, Azman;Jaafar, Yazid;Omar, Mohd. Adib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3366-3383
    • /
    • 2012
  • Reliance on the Internet has introduced Voice over Internet Protocol (VoIP) to various security threats. A reliable security protocol and an authentication scheme are thus required to prevent the aforementioned threats. However, an authentication scheme often demands additional cost and effort. Accordingly, a security framework for known participants in VoIP communication is proposed in this paper. The framework is known as Randomness-Optimized Self-Securing (ROSS), which performs authentication automatically throughout the session by optimizing the uniqueness and randomness of the communication itself. Elliptic Curve Diffie-Hellman (ECDH) key exchange and Salsa20 stream cipher are utilized in the framework correspondingly to secure the key agreement and the communication with low computational cost. Human intelligence supports ROSS authentication process to ensure participant authenticity and communication regularity. The results show that with marginal overhead, the proposed framework is able to secure VoIP communication by performing reliable authentication.

Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning (Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF

Multiple Digital Watermarking Framework for Joint-Creatorship Verification in VR Environment (VR 환경에서 공동 소유권 증명을 위한 다중 워터마킹 프레임워크)

  • Cho, Mi-Sung;Sohn, Yu-Seung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • Virtual Reality(VR) data in VR environments like Manufacturing industries are often created jointly by many creators. It is then necessary to provide protection of the joint-creatorship and the creatorship of each participating creator. This paper proposes Multiple Digital Watermarking Framework(MDWF) to solve the problem of joint-creatorship. The proposed framework, MDWF, makes use of 3D private watermarking technology and a novel key sharing protocol for joint-creatorship verification. MDWF embeds 3D private multiple watermarks for the creatorship of each participating creators in a non-overlapping manner during the creation process. After key agreement of all private keys, MDWF embeds an additional 3D private watermark for the joint-creatorship. Therefore MDWF successfully handles the creatorship dispute among creators. That is, each participation creator can prove his/her partial creatorship as well as joint-creatorship by MDWF. In addition, MDWF can solve the collusion problems because shared secret key(SSK) can be made by every users.

Security Flaws in Authentication Protocols with Anonymity for Wireless Environments

  • Xu, Jing;Feng, Dengguo
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.460-462
    • /
    • 2009
  • The emerging wireless networks require the design of new authentication protocols due to their dynamic nature and vulnerable-to-attack structure. Recently, Wu and others proposed a wireless authentication protocol which is claimed to be an improvement of the authentication protocol proposed by Lee and others which provides user anonymity. In this letter, we show that these protocols have a common flaw and that these protocols fail to provide user anonymity. We also propose a modification method to solve this problem.