• 제목/요약/키워드: Ketones.

검색결과 524건 처리시간 0.02초

저식염 수산발효식품의 가공에 관한 연구 10. 저식염조기젓 숙성중의 휘발성성분 및 지방산조함의 변화 (Studies on the Processing of Low Salt Fermented Sea Foods 10. Changes in Volatile Compounds and Fatty Acid Composition during the Fermentation of Yellow Corvenia Prepared with Low Sodium Contents)

  • 차용준;이응호;박두천
    • 한국수산과학회지
    • /
    • 제19권6호
    • /
    • pp.529-536
    • /
    • 1986
  • 젓갈의 품질개선을 목적으로 식염의 일부를 KCl, sorbitol, lactic acid와 고춧가루알콜추출물로 대체하여 당근 저식염조기젓($Y_3,\;4\%$ 식염함량)을 재래식젓($Y_1,\;20\%$ 식염함량)과 함께 숙성중의 휘발성성분을 비교분석하였으며 또한 지방산조함의 변화도 실험하였다. 원료조기의 지질구성비율은 중성지질이 $78.1\%$, 인지질이 $21.2\%$, 당지질이 $0.7\%$이었으며 총지질의 조성은 monoene산이 $37.4\%$로 가장 많았고 다음으로 포화산이 $34.8\%$, polyene산이 $27.7\%$이었다. 숙성중에는 polyene산($C_{22:6},\;C_{22:5},\;C_{20:5}$)의 경우 조기젓 $Y_3$$Y_1$에 비해 감소폭이 적었으나 전반적으로 둘다 감소한 반면에 포화산($C_{16:0},\;C_{18:0},\;C_{14:0}$)은 계속 증가하였고 monoene산($C_{16:1}\;C_{18:1}$)은 큰 변동이 없었다. 그리고 산가와 카르보닐가등도 숙성중 계속 증가하였으며 알콜을 첨가한 조기젓 $Y_3$$Y_1$에 비해 그 함량이 낮았다. 완숙기(숙성 90일경)의 조기젓, $Y_1,\;Y_3$의 전휘발성성분중 33종의 물질을 동정하였는데 주로 탄화수소류(8종), 알콜류(7종), 산류(6종), 알데히드류(4종), 함황화합물(2종), 케톤류(2종), 페놀(1종)과 기타물질(3종)로 구성되어 있었다. 조기젓 $Y_3$에서는 그중 2-ethoxy ethanol이 전체의 $79.36\%$를, $Y_1$에서는 nonadecane이 $75.85\%$를 차지하였다. 그리고 숙성기간중 저급휘발성산(8종), 염기(5종), 가르보닐화합물(9종)을 분리동정하였는데 완숙기의 조기젓 $Y_3$에서는 acetic acid, isovaleric acid, n-caproic acid, n-butyric acid가 휘발성산의 주류이었으며, 카르보닐화합물에서는 ethanal, 2-butanone, butanal등이고 염기에서는 TMA가 대부분이었다. 그리고 재래식젓과 비교하여 볼 때 각휘발성성분조성에는 큰 차이가 없고 함량비가 달랐으며, 조기젓의 냄새성분은 어느 특정성분에 의한 것 이라기 보다 여러 성분들의 상호조화에 의하여 젓갈특유의 풍미를 나타내는 것으로 볼 수 있었다.

  • PDF

동충하초 균사체로 발효시킨 백련잎차의 품질특성 (Quality Properties of White Lotus Leaf Fermented by Mycelial Paecilomyces japonica)

  • 김종숙;왕수빈;강성구;조영숙;박석규
    • 한국식품영양과학회지
    • /
    • 제38권5호
    • /
    • pp.594-600
    • /
    • 2009
  • 눈꽃 동충하초 균사체를 이용한 백련잎 발효차와 비발효차의 열수와 에탄올 추출물에 대한 품질특성을 평가하기 위하여, 추출수율, 갈변도, 유리당, 유기산, 유리아미노산, 무기질의 함량을 조사하였고, 또한 수증기 증류법으로 백련잎차의 휘발성 성분을 동정하였다. 추출수율은 발효 및 비발효차 모두 열수 추출물이 에탄올 추출물보다 높았으며, 백련잎 발효차의 열수 추출용매에서 유의적으로 가장 높은 26.55%를 나타내었고(p<0.05), 갈변도는 흡광도로서 열수 추출물이 에탄올 추출물에 비하여 1.6배 이상으로 높은 값을 나타내었다. 총 유리당은 백련잎 발효차의 열수 추출물에서 43.4%로 가장 높은 함량을 나타내었으며, glucose 함량은 발효차의 열수 및 에탄올 추출물에서 각각 5.6배, 3.7배 유의적으로 증가되었다(p<0.05). 총 유기산은 $861.9{\sim}4,704.8\;mg%$ 범위로서 발효 백련잎차의 에탄올 추출물이 가장 높았으며, 그 중에는 succinic acid가 에탄올 추출물에서 유의적으로 가장 높았고(p<0.05), 백련잎 발효차는 비발효차의 경우와는 달리 acetic acid, malic acid, tartaric acid가 확인되었다. 총 유리아미노산은 건물 당 $346.4{\sim}1,480.8\;mg%$ 범위 로서, 비발효 백련잎차의 열수 추출물이 가장 높은 함량을 나타내었다(p<0.05). 백련잎 발효차는 비발효차에 비하여 총 유리아미노산 함량이 감소하는 경향이었으며, 용매별로는 열수 추출물이 에탄올 추출물에 비하여 2.9배 유의적으로 높았고(p<0.05). 총 무기질은 비발효 및 발효차의 열수 추출물이 에탄올 추출물에 비하여 각각 2.1배, 1.7배 높았으며, 그 중에서는 발효차의 열수 추출물이 유의적으로 가장 높은 함량을 나타내었다(p<0.05). 휘발성 성분은 aldehyde류 11종, alcohol류 14종, ketone류 11종, hydrocarbone류 11종, acid류 12종으로 총 59개를 동정할 수가 있었으며, 특히 비발 효차는 alcohol류, 발효차는 aldehyde류와 ketone류에서 서로 다른 휘발성분들이 확인되었다.

에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선 (Upgrading of Quercus mongollica bio-oil by esterification)

  • 채광석;이형원;정한섭;이재정;주영민;이수민
    • 한국응용과학기술학회지
    • /
    • 제35권4호
    • /
    • pp.975-984
    • /
    • 2018
  • 급속열분해 바이오오일은 사용 용도를 제한하는 바람직하지 않은 많은 특성을 가지고 있다. 낮은 산도, 불안정성, 수분과 산소 함량, 식성 증가, 저장동안에 중합 및 낮은 발열량이 적용을 제한하는 주요 특징이다. 에스터 반응을 이용한 공비 수분 제거는 이 모든 특성을 개선할수 있다. 본 연구에서는 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 신갈나무 시료 500 g을 $550^{\circ}C$에서 2초 동안 급속열분해하여 바이오오일을 제조하였다. 제조된 바이오오일을 감압(100 hPa) 조건에서 30 min 동안 비휘발성 알콜인 n-butanol 처리하였다. 제조 오일의 수분, 점도, 고위발열량, 산도, FT-IR 및 GC/MS을 분석하였다. 수분은 91.4 % 감소(from 31.5 % to below 2.7 %), 점도는 65.8 % 감소(from 36.5 to 12.5 cP), 발열량은 96.8 % 증가(from 3,918 to 7,712 kcal/kg), 산도는 1.3 증가했다(from 2.7 to 4.0). FT-IR 및 GC/MS 분석결과 불안정한 산성물질, 알데히드, 케톤 및 저급 알콜이 안정된 목표 물질로 변환한 것으로 나타났다. 특히 실험 수행 과정에서 급속열분해 바이오오일의 수분 함량이 상당히 감소했다. 이렇게 개선된 품질 개선된 급속열분해 바이오오일은 표준보일러와 열병합발전소(CHP)의 연료로 이용이 가능하다.

(C10H8N2H)2Cr2O7를 이용한 알코올들의 산화반응과 반응속도에 관한 연구 (A Study for Kinetics and Oxidation Reaction of Alcohols using (C10H8N2H)2Cr2O7)

  • 박영조;김수종
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.927-933
    • /
    • 2022
  • 한 분자 내에 여러 가지 히드록시기가 존재 할 때, 특정 히드록시기만을 선택적으로 산화시키는 산화제는, 알코올을 포함한 유기화학 합성과정에서, 벤질알코올, 알릴알코올, 일차알코올, 이차알코올들이 있을 때, 특정 알코올만을 선택적으로 산화시키는 산화제로 사용할 수 있다. 우리는 (C10H8N2H)2Cr2O7을 합성하여, 적외선(FT-IR)과 원소분석 등으로 구조를 확인하였다. 유기용매들에서, (C10H8N2H)2Cr2O7을 이용하여 벤질알코올의 산화반응을 측정한 결과, 유기용매의 유전상수 값이 커짐에 따라 반응성이 증가했다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여알코올들의 산화반응을 측정한 결과, 벤질알코올, 알릴알코올, 일차알코올 및 이차알코올들을 알데히드나 케톤(65%~95%)으로 전환시키는 효율적인 산화제였다. DMF, acetone 용매에서 (C10H8N2H)2Cr2O7을 이용하여 알코올 혼합물들의 산화반응성을 측정한 결과, 이차알코올들이 있을 때, 벤질알코올, 알릴알코올, 일차알코올들을 선택적으로 산화(15%~95%) 시켰다. H2SO4 촉매를 첨가 후, DMF 용매에서, (C10H8N2H)2Cr2O7은 벤질알코올과 그의 유도체들을 효과적으로 산화시켰다. Hammett 반응상수(ρ) 값은 -0.69(308K) 이었다. 본 실험에서 알코올의 산화반응 과정은 속도결정단계에서 수소화 전이가 일어났다.