• Title/Summary/Keyword: Ketone ester

Search Result 53, Processing Time 0.031 seconds

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF

Effect of Linkage Groups on the Properties of Semi-flexible Liquid Crystalline Polymers (연결기가 반 유연성 액정중합체의 물성에 미치는 영향)

  • Park, Jong-Ryul;Yoon, Doo-Soo;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.445-451
    • /
    • 2015
  • Semi-flexible liquid crystalline polymers containing a mesogenic group and an octamethylene flexible spacer in the main chain were synthesized by solution polycondensation. The mesogenic group in the polymer consists of four aromatic rings connected by ester and ketone, ether, sulfide, methylene, sulfone, or isopropylidene linkage groups. This paper discusses effects of the central linker of the mesogenic group on polymer properties. The structures and properties of synthesized polymers were investigated by $^1H$-NMR, FT-IR, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), X-ray diffractometer (XRD), and polarizing optical microscope (POM). Polymers having bent linkage groups exhibited low thermal transition temperatures, narrow mesophase temperature ranges, low liquid crystallinity, and good solubilities in organic solvents, while those having bulky linkage groups were amorphous and exhibited high glass transition temperatures.

Volatile flavor components of Dioscorea japonica (참마의 휘발성 풍미성분)

  • Lee, Mie-Soon;Choi, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.68-73
    • /
    • 1994
  • An attempt was made to derermine the volatile flavor components of Dioscorea japonica. Essential oils from roots of the samples were isolated by simultaneous steam distillation-extraction(SDE) method using diethyl ether as solvent. Concentrated samples were analyzed by gas chromatography(GC) and combined gas chromatography-mass spectrometry(GC-MS). Fifty nine volatile flavor components, including 35 hydrocarbons, 5 aldehydes, 1 ketone, 9 alcohols, 2 esters, 3 acids and 4 miscellaneous ones were confirmed in the young roots of Dioscorea japonica. Forty two components, including 23 hydrocarbons, 2 aldehydes, 7 alcohols, 1 ester and 8 acids and 1 miscellaneous one were confirmed in the roots of mature stage. ${\sigma}-3-Carene$ and dodecanoic acid were regarded as the most abundant components in young and mature roots repectively. The profile of volatile flavor components was markedly different in young and mature roots of Dioscorea japonica.

  • PDF

Flavor Components of the Fruit Peel and Leaf Oil from Zanthoxylum piperitum DC (초피(Zanthoxylum piperitum DC)의 과피와 잎의 방향성분)

  • Kim, Jung-Han;Lee, Kyung-Seok;Oh, Won-Taek;Kim, Kyoung-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 1989
  • The essential oils from ripe fruit peel and leaf of Zanthoxylum piperitum DC were extracted by gas co-distillation method and analyzed by gas chromatography/mass spectrometry (GC/ MS) and retention index matching. The experimental results revealed the presence of over 100 volatile components. Major components were 1,8-cineol (25.47%), limonene (11.91%), geranyl acetate (9.01%), myrcene (6.15%) in fruit peel and citronellal (23.11%), 1,8-cineol (18.38%), citronellol (6.04%) in leaf. Among the components identified were the following; in fruit peel, ${\alpha}-pinene$ and 13 hydrocarbons, linalool and 8 alcohols, citronellal and 3 aldehydes, carvone and 2 kotones, methyl salicylate and 7 esters, and 1,8-cineol and oxides, and in leaf, ${\alpha}-pinene$ and 7 hydrocarbons, linalool and 7 alcohols, citronellyl acetate and 5 esters, citronellal and 1 aldehyde, carvone, and 1,8-cineol and 1 oxide.

  • PDF

Studies on the volatile components of Inulae flos(Inula britannica var. chinensis REGEL) (선복화(旋覆花)의 휘발성(揮發性) 성분(成分)에 관(關)한 연구(硏究))

  • Sun-Woo, Sun;Kim, Hyung-Sub;Byun, Keun-Soo
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.312-317
    • /
    • 1991
  • The volatile components of Korean and Chinese Inulae flos were identified. It is made of dried Inulae flos from the components were collected by simultaneous steam distillation extract method. Those were analyzed by combined gas chromatography(GC) and gas chromatography-mass spectrometrt(GC/MS). Sixty two components, including 10 hydrocarbons, 7 aldehydes, 18 alcohols, 3 ketones, 5 esters, 13 acids and 6 miscellaneous components were identified. Volatile components in Inulae flos were fractinated into one hydrocarbon fraction and two oxygenated hydrocarbon fractions by using silica gel column chromatography. The volatile components consisted of 16.85% hydrocarbon and 83.15% oxygenated hydrocarbons in Korean Inulae flos, 23.46% hydrocarbon and 76.53% oxygenated hydrocarbons in Chinese Inulae flos.

  • PDF

Effects of Probiotic Fermented Fruit Juice-Based Biotransformation by Lactic Acid Bacteria and Saccharomyces boulardii CNCM I-745 on Anti-Salmonella and Antioxidative Properties

  • Laosee, Wanida;Kantachote, Duangporn;Chansuwan, Worrapanit;Sirinupong, Nualpun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1315-1324
    • /
    • 2022
  • Fermentation is an effective process for providing various beneficial effects in functional beverages. Lactic acid bacteria and yeast fermentation-based biotransformation contribute to enhancement of nutritional value and digestibility, including lactose intolerance reduction and control of infections. In this study, the probiotic fermented fruit juice (PFJ) was produced by Lactobacillus plantarum TISTR 1465, Lactobacillus salivarius TISTR 1112, and Saccharomyces boulardii CNCM I-745 while mixed fruit juice (MFJ) was used as the basic medium for microorganism growth. The potential function, the anti-salmonella activity of PFJ, was found to be effective at 250 mg/ml of MIC and 500 mg/ml of MBC. Biofilm inhibition was performed using the PFJ samples and showed at least 70% reduction in cell attachment at the MIC concentration of Salmonella Typhi DMST 22842. The antioxidant activities of PFJ were determined and the results revealed that FSB.25 exhibited 78.40 ± 0.51 mM TE/ml by FRAP assay, while FPSB.25 exhibited 3.44 ± 0.10 mM TE/ml by DPPH assay. The volatile compounds of PFJ were characterized by GC-MS, which identified alcohol, aldehyde, acid, ester, ketone, phenol, and terpene. The most abundant organic acid and alcohol detected in PFJ were acetic acid and 2-phenylethanol, and the most represented terpene was β-damascenone. The sensory attributes showed scores higher than 7 on a 9-point hedonic scale for the FPB.25, illustrating that it was well accepted by panelists. Taken together, our results showed that PFJ could meet current consumer demand regarding natural and functional, fruit-based fermented beverages.

Changes in volatile compounds in rice-based distilled soju aged in different types of containers (숙성기간과 저장용기를 달리한 쌀 증류식 소주의 휘발성 향기성분 변화)

  • Kim, Wan-Keun;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In this study, volatile compounds in 13 aged and 3 commercial rice-distilled soju samples were isolated by headspace solid phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 85 volatile components including 35 esters, 15 alcohols, 5 ketones, 3 aldehydes, 15 miscellaneous, and 14 unknowns were identified. Esters and alcohols were the largest groups among the quantified volatiles. Differences in volatile compounds among the distilled soju samples and possible sample groupings were examined by principal component analysis of the GC-MS datasets. The first and second principal components (PC1 and PC2, respectively) explained 51.94% of the total variation across the 16 samples. The samples aged in oak containers had higher concentrations of ketones, aldehydes, and miscellaneous compounds. In the positive direction of PC1, oak-aged samples were observed, while, pot-aged samples were observed on the far negative side. Furthermore, samples aged for longer periods, such as 18 months, were observed in the positive direction of PC2.

Characteristics of Non-biodegradable Substances in Landfill Leachate (매립장 침출수의 생물학적 난분해성물질 특성 규명)

  • Lim, Bong-Su;Park, Hye-Sook;Kim, Heung Rag
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.484-489
    • /
    • 2005
  • In order to determine the removal rate of non-biodegradable substances and the change of their structural properties, this study was carried out by an ozone-treatment experiment on leachate collected from the landfill area of D City in Chung chung nam-do and examined the change of the chemical properties of non-biodegradable substances. The main elements of non-biodegradable substances in landfill leachate were benzene, toluene, trichloroethane, trichloroethylene, xylene, etc. and the concentration of toluene was 15.7 mg/L on the average, benzene 7.2 mg/L, trichloroethane 1.1 mg/L, trichloroethylene 0.75 mg/L and xylene 0.5 mg/L. When leachate was treated with ozone for 10 min, 30 min and 60 min, UV absorbance was reduced with the increase of reaction time, and the reduction rate was 38.6% at 60 min. TOC was removed by 13.2% at 60 min. The low reduction rate of TOC may be because TOC reacts indirectly with OH radical produced from reaction with ozone while UV absorbance usually relies on direct reaction between organic matters and ozone molecules. Color was removed by up to 97%, which suggests that ozonation is highly effective in removing coloring elements in leachate. Sixteen kinds of non-biodegradable compounds were found in the leachate and most of them had the characteristic of aromatic hydrocarbon. Among them dibutyl phthalate was identical with a substance included in the list of US EPA, which is classified as a mutagen that may cause the mutation of genes and disorders in chromosomes. In addition, 2,5-Cyclohexadiene-1,4-dione, 1,2-Benzenedicarboxylic acid and butyl octyl ester were found to be similar to substances listed by USEPA. According to the result of analyzing structural changes before and after ozonation using GC-MS, cyclic compounds and aromatic compounds were observed in the original water and aliphatic compounds were newly observed after ozonation. In addition, through ozonation, humic substances of high molecular weight were oxidized and decomposed and produced low-molecular compounds such as aldehyde, ketone and carboxyl acid and highly biodegradable aliphatic carbon, which suggests the bio-degradability of non-biodegradable substances.

Emission Characteristics of Volatile Organic Compounds by Humidifier with Using Hinoki Cypress Extracts (편백잎추출수의 실내 가습시 휘발성유기화합물 방출 특성)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Lee, Hee-Young;Kil, Duck-Han
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.747-757
    • /
    • 2014
  • Since the air contamination by air pollutants from indoor construction materials and daily supplies has been increased in recent decades, the public interest of using environmentally friendly products and improving indoor air quality also attracted much attention. As known as effects of phytoncide, it has been used in construction materials and daily supplies with various method. In this study, hinoki cypress (Chamaecyparis obtusa) was used because of its high contents of phytoncide. The leaves of hinoki cypress (C. obtusa), which generated by pruning, were extracted by steam distillation, and then used as humidification water source. Volatile organic compound (VOC) from C. obtusa were characterized by GC-MS (Gas chromatograph-Mass spectrophotometry) in order to evaluate effects and risks of using C. obtusa extracts. Total 86 types and 116 types of VOC were detected from distilled water (DI water) and C. obtusa extracts, respectively. Aromatic compounds (DI water: 13 types, 53%; C. obtusa extracts: 13 types, 38%) and terpenoids (DI water: 16 types, 23%; C. obtusa extracts: 23 types, 33%) were detected more diverse types and higher amount than other compound categories. No additional aromatic compounds were found from C. obtusa extracts, so C. obtusa extracts did not affect on aromatic compounds emission. However, in terpenoids, total amount of emission from C. obtusa extracts increased to 33% from 23% (DI water) and 7 more types of compounds were found from C. obtusa extracts. Especially, from C. obtusa extracts, terpinen-4-ol was emitted 71 times higher than DI water. During the humidification with C. obtusa extracts, emitted terpenoid compounds were well known for higher anti-bacterial, anti-insect, and anti-septic functions, but also these had anti-hypertensive and anti-cancer activities. Therefore, terpenoids from C. obtusa extracts can help to improve public health by using humidifier.

Functional and Volatile Flavor Compounds in Traditional Kyungsando Squid sikhe (경상도 전통마른오징어 식해의 향기성분 및 기능성)

  • Choi, Cheong;Lee, Hee-Duck;Choi, Hee-Jin;Son, Jun-Ho;Kim, Sung;Son, Gyu-Mok;Cha, Woen-Suep
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.345-352
    • /
    • 2001
  • The volatile compounds of traditional Kyungsando squid sikhe were identified by GC-MS. The amount of ${\alpha}-zingibirene$ among identified volatile compounds was 19.73 mg/kg. The major volatile compounds of sikhe were (Z)-Di-2-propenyl disulfide, ${\alpha}-curcumene$, methyl allyl disulfide, (E, E)-a-farnesene, pentanol, z-citral, 3-ethyl-1,2-dithi-5-ene-${\beta}-elemene$, ${\beta}-elemene$, acetic acid, and ${\beta}-phellandrene$. The volatile compounds of sikhe were compose of 49 including hydrocarbone groups, 15 aldehydes groups, 33 alcohol groups kinds, 11 ketone and ester groups. The fraction obtained from sikhe were tested for electron donating ability, angiotensin converting enzyme inhibitory activity and xanthine oxidase inhibitory activity. There were no electron donating abilities$(SC_{50})$ in hexane and water soluble fractions. On the other hand, the angiotensin converting enzyme abilities of ethylacetate and butanol soluble fractions were $310.64\;{\mu}g/mL$ and $1096.49\;{\mu}g/mL$, respectively. Angiotensin converting enzyme inhibitory activities$(IC_{50})$ of ethylacetate butanol soluble fractions were 1.623 mg/mL and 1.303 mg/mL, respectively. Xanthine oxidase inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol soluble fractions were 3.591 mg/mL and 2.083 mg/mL, respectively.

  • PDF