• Title/Summary/Keyword: Kerr effects

Search Result 63, Processing Time 0.023 seconds

Critical buckling loads of carbon nanotube embedded in Kerr's medium

  • Bensattalah, Tayeb;Bouakkaz, Khaled;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2018
  • In this article, the critical buckling of a single-walled carbon nanotube (SWCNT) embedded in Kerr's medium is studied. Based on the nonlocal continuum theory and the Euler-Bernoulli beam model. The governing equilibrium equations are acquired and solved for CNTs subjected to mechanical loads and embedded in Kerr's medium. Kerr-type model is employed to simulate the interaction of the (SWNT) with a surrounding elastic medium. A first time, a comparison with the available results is made, and another comparison between various models Winkler-type, Pasternak-type and Kerr-type is studied. Effects of nonlocal parameter and aspect ratio of length to diameter of nanobeam, as well as the foundation parameters on buckling of CNT are investigated. These results are important in the mechanical design considerations of nanocomposites based on carbon nanotubes.

Measurement of magnetic kerr rotation and faraday fotation angles by polarization modulation method (편광 변조 방법에 의한 자기 Kerr 회전각 및 Faraday 회전각 측정)

  • 이용호;이상수;이용호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 1992
  • In order to measure fine rotation angles by magneto-optic effects of magneto-optical recording thin films, a polarization modulation method is used. In the experiment, the polarization of laser (He-Ne laser) beam is modulated by a Faraday rotator and the amplified modulated signals are selectively detected by phase sensitive detector. The magnetic Kerr rotation and Faraday rotation hysteresis loops are investigated by this method for thermally evaporated amorphous TbFeCo thin films and RF sputtered garnet thin films. Rotation angles about $0.25^{\circ}$ are measured easily from TaFeCo thin films. In the case of longitudinal Kerr rotation, very small rotation angle of $2.5\times10^{-3^\circ}$ is measured with good accuracy of the measurement (about $1\times10^{-3^\circ}$). And it is found that each thin films have the hysteresis curves of high coercivity and good squareness.

  • PDF

Perpendicular Magenetic Anisotropy in TbFeCo Magneto Optic Recording Thin Films

  • Lee, Yong-Ho-;Lee, Sang-Soo-
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.127-131
    • /
    • 1988
  • In order to clarify the origin of perpendicular anisotropy in thermally evaporated TbFeCo amorphous thin films, we have investigated the effects of deposition angle on magnetic Kerr hysteresis loop, perpendicular magnetic anisotropy and internal stress depend strongly on the deposition angle and above a threshold value(30$^{\circ}$), the perpendicular anisotropy disapperars and the in-plane anisotropy appears. The measurement of internal stress is the major contribution to the perpendicular anisotropy. The measurements of Kerr hysteresis loops in the polar and the longitudinal directions show that as the deposition angle increases the polar kerr hystresis loop deteriorates while the longitudinal Kerr hystersis loop becomes prominent.

  • PDF

Effects of Sputtering Ar Gas Pressure on Magnetic and Magneto-Optical Properties in Compositonally Modulated Co/Pt Superlattice Thin Films (조성변조 Co/Pt 초격자 박막의 Ar 가스 압력변화에 따른 자기 및 자기광학적 특성)

  • 유천열;김진홍;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.32-38
    • /
    • 1994
  • We have investigated the effects of sputtering Ar gas pressure on magnetic and magneto-optical properties in compositionally modulated Co/Pt superlattice thin films. The samples were prepared by dc magnetron sputtering. Sputtrering Ar gas pressure was varied from 2 to 30 mTorr. The microstructure of the samples was examined by scanning electron microscope and the x-ray diffractometry. The magnetization, the Kerr rotation angle, and the reflectivity of the samples were measured. The columnar structure was developed, and the coercivity was drasti- cally increased, when the sputtering Ar gas pressure was higher than 20 mTorr. We explained that the variation of the magnetization, the Kerr rotation angle, and the reflectivity was related with the microstructure influenced by the variation of the Ar gas pressure.

  • PDF

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

Investigating dynamic response of porous advanced composite plates resting on Winkler/Pasternak/Kerr foundations using a new quasi-3D HSDT

  • Rabhi, Mohamed;Benrahou, Kouider Halim;Yeghnem, Redha;Guerroudj, Hicham Zakaria;Kaci, Abdelhakim;Tounsi, Abdelouahed;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.771-788
    • /
    • 2022
  • This research investigates the free vibration of porous advanced composite plates resting on Winkler/Pasternak/ Kerr foundations by using a new hyperbolic quasi three dimensional (quasi-3D) shear deformation theory. The present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by parabolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate. In this work, we consider imperfect FG plates with porosities embedded within elastic Winkler, Pasternak or Kerr foundations. Implementing an analytical approach, the obtained governing equations from Hamilton's principle according to FG plates are derived. The closed form solutions are obtained by using Navier technique, and natural frequencies of FG plates are found, for simply supported plates, by solving the results of eigenvalue problems. A comprehensive parametric study is presented to evaluate effects of the geometry of material, mode numbers, porosity volume fraction, Power-law index and stiffness of foundations parameters on free vibration characteristics of FG plates.