• Title/Summary/Keyword: Kerr's medium

Search Result 10, Processing Time 0.019 seconds

Critical buckling loads of carbon nanotube embedded in Kerr's medium

  • Bensattalah, Tayeb;Bouakkaz, Khaled;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.339-356
    • /
    • 2018
  • In this article, the critical buckling of a single-walled carbon nanotube (SWCNT) embedded in Kerr's medium is studied. Based on the nonlocal continuum theory and the Euler-Bernoulli beam model. The governing equilibrium equations are acquired and solved for CNTs subjected to mechanical loads and embedded in Kerr's medium. Kerr-type model is employed to simulate the interaction of the (SWNT) with a surrounding elastic medium. A first time, a comparison with the available results is made, and another comparison between various models Winkler-type, Pasternak-type and Kerr-type is studied. Effects of nonlocal parameter and aspect ratio of length to diameter of nanobeam, as well as the foundation parameters on buckling of CNT are investigated. These results are important in the mechanical design considerations of nanocomposites based on carbon nanotubes.

Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeetaba, Sayed Behzad
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.225-238
    • /
    • 2020
  • This work treats the axisymmetric buckling of functionally graded (FG) porous annular/circular nanoplates based on modified couple stress theory (MCST). The nanoplate is located at the elastic medium which is simulated by Kerr foundation with two spring and one shear layer. The material properties of the porous FG nanostructure are assumed to vary through the nanoplate thickness based on power-law rule. Based on two variables refined plate theory, the governing equations are derived by utilizing Hamilton's principle. Applying generalized differential quadrature method (GDQM), the buckling load of the annular/circular nanoplates is obtained for different boundary conditions. The influences of different involved parameters such as boundary conditions, Kerr medium, material length scale parameter, geometrical parameters of the nanoplate, FG power index and porosity are demonstrated on the nonlinear buckling load of the annular/circular nanoplates. The results indicate that with increasing the porosity of the nanoplate, the nonlinear buckling load is decreased. In addition, with increasing the material length scale parameter to thickness ratio, the effect of spring constant of Kerr foundation on the buckling load becomes more prominent. The present results are compared with those available in the literature to validate the accuracy and reliability. A good agreement is observed between the two sets of the results.

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune;Abdelwahed Semmah;Mohammed L. Bouchareb;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.243-261
    • /
    • 2023
  • This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeitaba, Sayed Behzad
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.307-318
    • /
    • 2019
  • This is the first attempt to consider the nonlinear bending analysis of porous functionally graded (FG) thick annular and circular nanoplates resting on Kerr foundation. The size effects are captured based on modified couple stress theory (MCST). The material properties of the porous FG nanostructure are assumed to vary smoothly through the thickness according to a power law distribution of the volume fraction of the constituent materials. The elastic medium is modeled by Kerr elastic foundation which consists of two spring layers and one shear layer. The governing equations are extracted based on Hamilton's principle and two variables refined plate theory. Utilizing generalized differential quadrature method (GDQM), the nonlinear static behavior of the nanostructure is obtained under different boundary conditions. The effects of various parameters such as material length scale parameter, boundary conditions, and geometrical parameters of the nanoplate, elastic medium constants, porosity and FG index are shown on the nonlinear deflection of the annular and circular nanoplates. The results indicate that with increasing the material length scale parameter, the nonlinear deflection is decreased. In addition, the dimensionless nonlinear deflection of the porous annular nanoplate is diminished with the increase of porosity parameter. It is hoped that the present work may provide a benchmark in the study of nonlinear static behavior of porous nanoplates.

MAGNETIC AND MAGNETO-OPTICAL PROPERTIES OF Co-BASED MULTILAYERED FILMS PREPARED BY ELECTRON-BEAM EVAPORATION

  • Lee, Y.P.;Lee, B.J.;Park, H.K.;Kim, S.K.;Kang, J.S.;Jeong, J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.24-29
    • /
    • 1995
  • The magnetic amd magneto-optical(MO)properties of Co-based multilayered(ML)films are known to vary sensitively according to the manufacturing methods and the film microstructures. Co/Pd and Co/Pt ML films with ultrathin layers of Co were prepared by alternating deposition in an ultrahigh-vacuum physical-vapor-deposition system. The individual layer thicknesses of the samples were estimated making use of the angular positions of x-ray diffraction peaks. The magnetic and MO properties were investigated, and correlated systematically to the structural parameters of the films. A Kerr spectrometer was self-manufactured to measure the MO properties such as Kerr rotation angle, ellipticity and reflectivity. The rms surface roughness was also measured using atomic force microscopy. Some of the samples showed good properties for MO medium, such as large perpendicular magnetic anisotropy and Kerr rotation, and perfect squareness of the magnetic hysteresis loop.

  • PDF

A Study on a Linear Phase Conjugate Oscillator with Photorefractive Medium (광굴절 매질로 구성된 선형 위상 공액 발진기의 발진 조건에 관한 연구)

  • 조제황;이우상;양인응;김은수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1108-1114
    • /
    • 1988
  • Usng the P.Yeh's analytic method, we derive the condition for oscillation of a linear phase conjugate oscillator which consists of photorefractive medium and two conventional mirrors. From this general oscillation condition, we obtain the threshold oscillation conditon of a single phase conjugate resonator and the self-oscillation condition of photorefractive medium, then in special case (phase shift =90\ulcorner: no external dc electric field), oscillation conditions of the linear phase conjugate oscillator for any cavity length are derived. The results indicate that, unlike in a phase conjugate oscillator with Kerr-like medium, oscillation cannot occur at special cavity length for given couplinyg strengths.

  • PDF

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Characterization and biovar. cetermination of agrobacterium tumefaciens T7 isolated in Korea (한국에서 분리한 agrobacterium tumefaciens T7의 특성과 biovar.결정)

  • Rhee, Y.;Kim, C. J.;Kim, S. H.;Yoo, I. D.;Mheen, T. I.
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.17-22
    • /
    • 1987
  • For the purpose of securing of strains which can be usefully utilized to study symbiosis between Rhizobium and legume plant, A. tumefaciens T7 was isolated and characterized and then subgroup biovar was determined. A. tumefaciens T7 induced smooth tumor like nopaline type one and did not grow at $37^{\circ}C$ and in the presence of 2% NaCl on yeast extract mannitol medium. The strain was able to grow on the New and Kerr selective media and utilize erythritol but not phenylalanine, tryptophan, and tartarate as a sole carbon source. Negative results were obtained from 3-keto-lactose production and oxidase test. The strain produced alkalifrom malonate and citrate and showed acid litmus milk reaction At least two large plasmids were detected in the cell lysate. According to all of these results, it could be concluded that subdivision of isolated strain was biovar 2.

  • PDF

Isolation of Hypervirulent Agrobacterium spp from Korea and Application for Transformation of Tobacco (한국산 고감염 Agrobacterium spp의 분리 및 연초의 형질전환에 이용)

  • 양덕춘;정재훈;이정명
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.207-217
    • /
    • 1998
  • Total of 78 strains were characterized based on the morphological characteristics of colonies isolated on Schroth, and New & Kerr's media for selection of hypervirulent wild-type Agrobacterium spp from galls, hairy root-like process and soil of Populus, Malus, Salix and Diopyros in Korea. Among them, 48 strains were able to induce tumors in carrot disc. Hypervirulent A. tumefaciens SP101 and SM042 were identified as biotype 1 and biotype 2, respectively, These strains formed fast growing, larger tumors as compared to those induced by other strains. The binary vector pGA643 with kanamycin resistant gene was mobilized from E. coli MC100 into A. tumefaciens strain SM042 isolated from soil, and/or disarmed vector PC2760 using a triparental mating method with E. coli HB101/pRK2013, and transconjugants, A. tumefaciens SM643 and PC643 were obtained in minimal media containing kanamycin and tetracycline. Tobacco tissues were cocultivated with conjugant Agrobacterium and then transferred to selective medium with 2,4-D and kanamycin to induce the transformants. Calli were formed more efficiently in cocultivation with A. tumefaciens SM643 than that with A. tumefaciens PC643. Most of calli transformed with A. tumefaciens PC643 were friable and regenerated into normal plantlets, while the calli transformed with A. tumefaciens SM643 were compact, hard, and mixed with friable calli. The friable calli formed normal shoots, while compact calli did not form shoots but only grew to typical compact tumor calli. When the shoots formed directly from tobacco stems without callus induction after transformation by A. tumefaciens SM643 with wild-type Ti-plasmid, normal transformed plants can be induced without using disarmed Ti-plasmid.

  • PDF

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.