• Title/Summary/Keyword: Kerosene combustion

Search Result 189, Processing Time 0.028 seconds

Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구)

  • 남궁혁준;한풍규;조원국
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.78-82
    • /
    • 2003
  • The cooling mechanism for a regenerative cooling liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket engine could be improved.

  • PDF

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • Han, Pung-Gyu;Nam-Gung, Hyeok-Jun;Jo, Won-Guk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.66-72
    • /
    • 2003
  • The cooling mechanism for a liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of both the regenerative and curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket en g i.ne could be improved.

Numerical Investigation of Nonpremixed Turbulent Flame of Cracked Kerosene in a Model Scramjet Combustor using Zonal Hybrid RANS/LES Method (Zonal Hybrid RANS/LES를 이용한 크랙된 케로신 스크램제트 연소기의 비예혼합 난류 연소 연구)

  • Shin, Junsu;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.304-309
    • /
    • 2017
  • This paper studies a nonpremixed turbulent flame in a model scramjet combustor using zonal hybrid RANS/LES method. The numerical domain is divided into two region, RANS and LES region. The interface between the two regions is treated with synthetic eddy method. A model scramjet combustor experimented at German aerospace center is selected for the comparative study. The fuel injection of cracked kerosene surrogate which is composed of ethylene and methane is considered. Turbulent combustion of cracked kerosene surrogate is achieved using flamelet approach.

  • PDF

Development of Real-Fluid Package Compatible with Chemkin for High-Pressure Kerosene/LOx Combustion (케로신/액체산소의 고압 연소해석을 위한 열역학/전달 물성치 해석 패키지 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.89-92
    • /
    • 2011
  • The modeling of thermodynamic non-idealities and transport anomalies is a crucial prerequisite to realistically simulate the mixing and combustion processes of liquid propellants injected above critical pressures. This study has developed a specific set of subroutines to calculate the thermodynamic and transport properties based on the generalized cubic equation of state (EoS) in a coupled manner with the standard chemical kinetics packages (Chemkin). The existing flamelet analysis code is extended with the real-fluid package and applied to numerical investigation of local flame structures of kerosene and liquid oxygen at high pressure conditions relevant to the actual rocket engines.

  • PDF

Behavioral Change of the Ultrasonic Standing Wave-affected Flame in the Reaction Zone of the Ultrasonically-atomized Kerosene Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 케로신 화염의 정상초음파 가진에 의한 거동 변이)

  • Bae, Chang Han;Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.60-67
    • /
    • 2022
  • A study was conducted to analyze the behavioral change of the kerosene flame ultrasonically-atomized under an ultrasonic standing-wave. Combustion region was visualized through DSLR, ICCD camera and the Schlieren photography with high-speed camera. The fuel consumption was measured by a precise scale. As a result, in the case of ultrasonic standing-wave excitation, it was observed that the intensity of OH radical(OH*) was enhanced and optimal combustion condition was formed around the upper edge of the standing-wave field.

NOx Emissions in Flameless Combustion of Kerosene-Air Mixture Jets Injected into Hot Burned Gas Stream from Combustion Wall

  • Aida, Naoki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.449-452
    • /
    • 2004
  • “Flameless combustion” of lean to ultra lean mixtures, supported by high-temperature burned gas, can resolve the dilemma between complete combustion versus ultra-low NOx emissions in gas turbine combustors. The characteristics of NOx emissions and combustion in “lean-lean” two-stage combustion were investigated for fuel vapor and droplets / air mixture jets injected from the main injection tube that was placed perpendicular to the combustor wall into the primary hot burned gas prepared by combustion of lean mixtures on a perforated flame holder. The present results clearly show that the ultra-low NOx combustion supported by the reaction of lean mixtures well mixed with the hot burned gas from the primary stage is much more advantageous in achieving ultra-low NOx emissions while maintaining high combustion efficiency.

  • PDF

Design Point Operating Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 설계점 운영 특성)

  • Moon, Ilyoon;Moon, Insang;Kang, Sang Hun;Ha, Seong-Up;Lee, Soo Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.81-88
    • /
    • 2013
  • It was designed and tested at the design point that an oxidizer rich preburner for a staged combustion liquid rocket engine propelled by kerosene and LOx. The oxidizer rich preburner was designed as some of LOx injected from the mixing head was burned with kerosene and the rest of LOx injected from injection holes in the regenerative cooling chamber was vaporized by combustion gas. The preburner is operated at OF ratio of 60 and combustion pressure of 20 MPa. The Preburner has a honey-comb type mixing head with simplex swirl injectors, a turbulence ring improving combustion stability and uniformity of product gas temperature distribution, and a nozzle simulating the duct. With the combustion test results at the design point, the oxidizer rich preburner showed high combustion stability and uniformity of product gas temperature distribution.

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

Combustion of ethyl alcohol and kerosene fuel droplets in atmospheric pressure (대기압하에서의 에틸알코올과 케로신 연료액적의 연소에 관한 연구)

  • Han, jae-seob;Kim, seon-jin;Park, bong-yeop;Kim, yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-78
    • /
    • 2001
  • This paper presents the results of an experimental investigation on the combustion of single droplets arrays of Ethyl alcohol and kerosene fuel droplets in atmospheric pressure. The initial droplet diameters, d$_{0}$, were nominally 1.3~1.8mm, and inter-droplet separation distance l(l/do=1.31~2.60). experimental results indicate that burning rate constants(K) of ethyl alcohol and kerosene droplets were independent of initial droplet size as 0.0083, 0.0095 $\textrm{cm}^2$/sec. For 1-D droplet array's kerosene fuel droplet, burning rate constants(K) decreases with decreasing normalized inter-droplet distance. Normalized inter-droplet distance has stronger effect on 2nd fuel droplet than 3rd fuel droplet. When normalized inter-droplet distance is larger than 2.60, the effect of droplet spacing on droplet life is very small.

  • PDF

Korean Reusable Launch Vehicle Development Strategy Using SpaceX's Strategy (SpaceX의 전략을 활용한 한국형 재사용 발사체 개발 전략)

  • Lee, Keum-Oh;Lee, Junseong;Park, Soon-Young;Roh, Woong-Rae;Im, Sung-Hyuck;Nam, Gi-Won;Seo, Daeban
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.101-112
    • /
    • 2021
  • SpaceX shows various strategies such as constructing various payload portfolio through the reuse of Falcon 9 and Falcon Heavy, constructing the launch vehicles using one type of engine, the transition from kerosene engine to methane engine, and the use of 3D printing. In this study, launch vehicle proposals that can cover a variety of payloads and trajectories from KOMPSAT to GEO-KOMPSAT were constructed, and ten launch vehicles using kerosene gas generator cycle engine, kerosene staged-combustion cycle engine, and methane staged-combustion cycle engine were reviewed. Of the ten launch vehicles, the reusable launch vehicle using a 35-ton methane engine was rated as the best in terms of development potential.