• Title/Summary/Keyword: Kerma

Search Result 84, Processing Time 0.026 seconds

Intercomparison of KAERI Reference Photon Radiation Fields

  • S.Y.Chang;J.C.MacDonald;M.K.Murphy;Kim, B.H.;Lee, K.C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.34-39
    • /
    • 1996
  • A series of measurements was peformed between KAERI and PNNL, U.S.A at KAERI secondary calibration laboratory to intercompare and verify the KAERI reference photon radiation fields by using air equivalent plastic walled ionization chambers, Different ionization chambers of two laboratories were used to determine the air kerma rate, free-in-air, at reference positions in the KAERI photon radiation fields, As the results, the agreement in the cross measurements between two laboratories was found to be within less than ${\pm}$ 3 %. This degree of consistency was considered to be encouraging, because each laboratory maintains independently its calibration traceablity with its national primary standard

  • PDF

Neutron spectrum unfolding using two architectures of convolutional neural networks

  • Maha Bouhadida;Asmae Mazzi;Mariya Brovchenko;Thibaut Vinchon;Mokhtar Z. Alaya;Wilfried Monange;Francois Trompier
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2276-2282
    • /
    • 2023
  • We deploy artificial neural networks to unfold neutron spectra from measured energy-integrated quantities. These neutron spectra represent an important parameter allowing to compute the absorbed dose and the kerma to serve radiation protection in addition to nuclear safety. The built architectures are inspired from convolutional neural networks. The first architecture is made up of residual transposed convolution's blocks while the second is a modified version of the U-net architecture. A large and balanced dataset is simulated following "realistic" physical constraints to train the architectures in an efficient way. Results show a high accuracy prediction of neutron spectra ranging from thermal up to fast spectrum. The dataset processing, the attention paid to performances' metrics and the hyper-optimization are behind the architectures' robustness.

Modelling atomic relaxation and bremsstrahlung in the deterministic code STREAM

  • Nhan Nguyen Trong Mai;Kyeongwon Kim;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.673-684
    • /
    • 2024
  • STREAM, developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST), is a deterministic neutron- and photon-transport code primarily designed for light water reactor (LWR) analysis. Initially, the photon module in STREAM did not account for fluorescence and bremsstrahlung photons. This article presents recent developments regarding the integration of atomic relaxation and bremsstrahlung models into the existing photon module, thus allowing for the transport of secondary photons. The photon flux and photon heating computed with the newly incorporated models is compared to results obtained with the Monte Carlo code MCS. The incorporation of secondary photons has substantially improved the accuracy of photon flux calculations, particularly in scenarios involving strong gamma emitters. However, it is essential to note that despite the consideration of secondary photon sources, there is no noticeable improvement in the photon heating for LWR problems when compared to the photon heating obtained with the previous version of STREAM.

Development of a Dose Calibration Program for Various Dosimetry Protocols in High Energy Photon Beams (고 에너지 광자선의 표준측정법에 대한 선량 교정 프로그램 개발)

  • Shin Dong Oh;Park Sung Yong;Ji Young Hoon;Lee Chang Geon;Suh Tae Suk;Kwon Soo IL;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2002
  • Purpose : To develop a dose calibration program for the IAEA TRS-277 and AAPM TG-21, based on the air kerma calibration factor (or the cavity-gas calibration factor), as well as for the IAEA TRS-398 and the AAPM TG-51, based on the absorbed dose to water calibration factor, so as to avoid the unwanted error associated with these calculation procedures. Materials and Methods : Currently, the most widely used dosimetry Protocols of high energy photon beams are the air kerma calibration factor based on the IAEA TRS-277 and the AAPM TG-21. However, this has somewhat complex formalism and limitations for the improvement of the accuracy due to uncertainties of the physical quantities. Recently, the IAEA and the AAPM published the absorbed dose to water calibration factor based, on the IAEA TRS-398 and the AAPM TG-51. The formalism and physical parameters were strictly applied to these four dose calibration programs. The tables and graphs of physical data and the information for ion chambers were numericalized for their incorporation into a database. These programs were developed user to be friendly, with the Visual $C^{++}$ language for their ease of use in a Windows environment according to the recommendation of each protocols. Results : The dose calibration programs for the high energy photon beams, developed for the four protocols, allow the input of informations about a dosimetry system, the characteristics of the beam quality, the measurement conditions and dosimetry results, to enable the minimization of any inter-user variations and errors, during the calculation procedure. Also, it was possible to compare the absorbed dose to water data of the four different protocols at a single reference points. Conclusion : Since this program expressed information in numerical and data-based forms for the physical parameter tables, graphs and of the ion chambers, the error associated with the procedures and different user could be solved. It was possible to analyze and compare the major difference for each dosimetry protocol, since the program was designed to be user friendly and to accurately calculate the correction factors and absorbed dose. It is expected that accurate dose calculations in high energy photon beams can be made by the users for selecting and performing the appropriate dosimetry protocol.

A Study on the Performance Evaluation of Standard Gamma Irradiation System Using Monte Carlo Code (몬테카를로 코드를 활용한 표준 감마선 조사장치의 성능평가에 관한 연구)

  • Park, Won-Seok;Heo, Seung-Uk;Kim, Jang-Oh;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.179-184
    • /
    • 2018
  • In this study, we compared the measured values of the effective beam size of standard gamma irradiator with the simulation results to provide a useful means to the effective beam area determination. Results of the simulation and measured using ion chamber was distributed in a relative error of 4.5 ~ 7.3% of the case of air kerma rate. The size of the effective beam area is when the simulation was implemented in the horizontal direction 27cm, 21.6cm vertical direction, the measured result using a film was obtained similar results with the horizontal direction 26.5cm, 21.9cm vertical direction. The relative error in the horizontal direction is 1.85% and 1.38% vertical effective beam area was also similarly distributed around the field gamma rays. As a result of the study, it was confirmed that the effectiveness of the simulation was sufficient for the gamma irradiation system. In particular, it is small relative errors in the effective beam size than the air kerma rate is considered to be due to the size of the beam is determined by geometric factors rather than the capacity of the standard source. A further study is needed to improve the reliability of the photon energy distribution diagram using simulation.

Analysis on the Entrance Surface Dose and Contrast Medium Dose at Computed Tomography and Angiography in Cardiovascular Examination (심장혈관검사에서 전산화단층검사와 혈관조영검사의 입사표면선량 및 조영제 사용량에 관한 분석)

  • Seo, Young-Hyun;Han, Jae-Bok;Choi, Nam-Gil;Song, Jong-Nam
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.535-541
    • /
    • 2016
  • This study aimed to identify dose reduction measures by retrospectively analyzing the entrance surface dose at computed tomography and angiography in cardiovascular examination and to contribute the patients with renal impairmend and a high probability of side effects to determine the inspection's direction by measuring the contrast usages actually to active actions for the dose by actually measuring the contrast medium dose. The CTDIvol value and air kerma value, which are the entrance surface doses of the two examinations, and the contrast medium dose depending on the number of slides were compared and analyzed. This study was conducted in 21 subjects (11 males; 10 females) who underwent Cardiac Computed Tomographic Angiography (CCTA) and Coronary Angiography (CAG) in this hospital during the period from May 2014 to May 2016. The subject's age was 48~85 years old (mean $65{\pm}10$ years old), and the weight was 37.6~83.3 kg (mean $63{\pm}6kg$). Dose reduction could be expected in the cardiovascular examination using CCTA rather than in the examination using CAG. In terms of contrast medium dose, CAG used a smaller dose than CCTA. In particular, as the number of slides increases at CAG, the contrast medium dose increases. Therefore, in order to reduce the contrast medium dose, the number of slides suitable for the scan range must be selected.

Central Axis Percentage Depth-Dose in a Water Phantom Irradiated by Conventional X-rays (Water Phantom 속 Conventional X-ray 중심축상의 깊이 선량 백분율)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae;Oh, Jang-Jin;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • Central axis percentage depth-doses, P(%), were measured at the points from the 2.5cm depth of reference point to 20 cm depth with 2.5 cm interval. Distance from the X-ray target to the water phantom($30{\times}30{\times}30cm^3$) surface was 1 m, and at this point three different beam sizes of $5cm{\phi},\;10cm{\phi},\;and\;15cm{\phi}$ were used. While the X-ray tube voltage varied from 150 to 250 kV, the tube current remained constant at 5 mA. Absorbed dose rate in water, $\dot{D}_w$, was determined using the air kerma calibration factor, $N_k$, which was derived from the exposure calibration factor, $N_x$, of the NE 2571 ion chamber. The reference exposure rate, $\dot{X}_c$, was measured using the Exradin A-2 ion chamber calibrated at ETL, Japan. The half value layers of the X-rays determined to meet ETL calibration qualities. The absorbed dose rates determined at the calibration point were compared to the values obtained from Burlin's general cavity theory, and the percentage depth-dose values determined from $N_k$ showed a good agreement with the values of the published depth dose data(BJR Suppl. 17).

  • PDF

Experimental Study on the Determination of Absorbed dose Index (흡수선량지수결정(吸收線量指數決定)에 관한 실험적(實驗的) 연구(硏究))

  • Jun, Jae-Shik;Rho, Chae-Shik;Ro, Seung-Gy;Ha, Chung-Woo;Yoo, Young-Soo;Lee, Hyun-Duk
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • The prime purpose of this study is to realize an index quantity, absorbed dose index, defined by the ICRU for the characterization of ambient radiation level at any location for the purpose of radiation protection. The experiment has been designed to be carried out in two phases, namely, preliminary and main experiment. In the primary study a 30cm diameter sphere of polyethylene was used, while in the main experiment that of tissue equivalent material was fabricated and used. Both experiments were performed in the gamma-ray fields of $^{137}Cs\;and\;^{60}Co$, and in a neutron beam of thermal column of the TRIGA MARK-II research reactor. In the measurement of gamma-ray absorbed dose TLD-700 $(^{7}LiF)$ chips were used, and for the neutron dose both Au activation foils and TLD chips (TLD-600 $(^{6}LiF)$ and TLD-700 for the discrimination of gamma-ray contribution) were used. Theoretical assessment of the absorbed dose in the sphere phantom has been carried out in accordance with the Ehrlich's idea that deduced on the basis of Burlin's cavity theory in the case of gamma-ray irradiation. For the analysis of neutron dose fluence-KERMA rate conversion method was used. The explanation on the dose assessment is given in detail. Results obtained were numerically and statistically analyzed and the depth dose distributions are presented in the graphic forms with normalized values. In the concluding remarks, the possibility and difficulty of realizing the index quantity, including questions and problems to be solved are mentioned.

  • PDF

Reduction of Radiation Dose to Eye Lens in Cerebral 3D Rotational Angiography Using Head Off-Centering by Table Height Adjustment: A Prospective Study

  • Jae-Chan Ryu;Jong-Tae Yoon;Byung Jun Kim;Mi Hyeon Kim;Eun Ji Moon;Pae Sun Suh;Yun Hwa Roh;Hye Hyeon Moon;Boseong Kwon;Deok Hee Lee;Yunsun Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.681-689
    • /
    • 2023
  • Objective: Three-dimensional rotational angiography (3D-RA) is increasingly used for the evaluation of intracranial aneurysms (IAs); however, radiation exposure to the lens is a concern. We investigated the effect of head off-centering by adjusting table height on the lens dose during 3D-RA and its feasibility in patient examination. Materials and Methods: The effect of head off-centering during 3D-RA on the lens radiation dose at various table heights was investigated using a RANDO head phantom (Alderson Research Labs). We prospectively enrolled 20 patients (58.0 ± 9.4 years) with IAs who were scheduled to undergo bilateral 3D-RA. In all patients' 3D-RA, the lens dose-reduction protocol involving elevation of the examination table was applied to one internal carotid artery, and the conventional protocol was applied to the other. The lens dose was measured using photoluminescent glass dosimeters (GD-352M, AGC Techno Glass Co., LTD), and radiation dose metrics were compared between the two protocols. Image quality was quantitatively analyzed using source images for image noise, signal-to-noise ratio, and contrast-to-noise ratio. Additionally, three reviewers qualitatively assessed the image quality using a five-point Likert scale. Results: The phantom study showed that the lens dose was reduced by an average of 38% per 1 cm increase in table height. In the patient study, the dose-reduction protocol (elevating the table height by an average of 2.3 cm) led to an 83% reduction in the median dose from 4.65 mGy to 0.79 mGy (P < 0.001). There were no significant differences between dose-reduction and conventional protocols in the kerma area product (7.34 vs. 7.40 Gy·cm2, P = 0.892), air kerma (75.7 vs. 75.1 mGy, P = 0.872), and image quality. Conclusion: The lens radiation dose was significantly affected by table height adjustment during 3D-RA. Intentional head off-centering by elevation of the table is a simple and effective way to reduce the lens dose in clinical practice.

Analysis of several VERA benchmark problems with the photon transport capability of STREAM

  • Mai, Nhan Nguyen Trong;Kim, Kyeongwon;Lemaire, Matthieu;Nguyen, Tung Dong Cao;Lee, Woonghee;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2670-2689
    • /
    • 2022
  • STREAM - a lattice transport calculation code with method of characteristics for the purpose of light water reactor analysis - has been developed by the Computational Reactor Physics and Experiment laboratory (CORE) of the Ulsan National Institute of Science and Technology (UNIST). Recently, efforts have been taken to develop a photon module in STREAM to assess photon heating and the influence of gamma photon transport on power distributions, as only neutron transport was considered in previous STREAM versions. A multi-group photon library is produced for STREAM based on the ENDF/B-VII.1 library with the use of the library-processing code NJOY. The developed photon solver for the computation of 2D and 3D distributions of photon flux and energy deposition is based on the method of characteristics like the neutron solver. The photon library and photon module produced and implemented for STREAM are verified on VERA pin and assembly problems by comparison with the Monte Carlo code MCS - also developed at UNIST. A short analysis of the impact of photon transport during depletion and thermal hydraulics feedback is presented for a 2D core also from the VERA benchmark.