The aim of this study was to develop a marbling classification and prediction model using small parts of sirloin images based on a deep learning algorithm, namely, a convolutional neural network (CNN). Samples were purchased from a commercial slaughterhouse in Korea, images for each grade were acquired, and the total images (n = 500) were assigned according to their grade number: 1++, 1+, 1, and both 2 & 3. The image acquisition system consists of a DSLR camera with a polarization filter to remove diffusive reflectance and two light sources (55 W). To correct the distorted original images, a radial correction algorithm was implemented. Color images of sirloins of Hanwoo (mixed with feeder cattle, steer, and calf) were divided and sub-images with image sizes of 161 × 161 were made to train the marbling prediction model. In this study, the convolutional neural network (CNN) has four convolution layers and yields prediction results in accordance with marbling grades (1++, 1+, 1, and 2&3). Every single layer uses a rectified linear unit (ReLU) function as an activation function and max-pooling is used for extracting the edge between fat and muscle and reducing the variance of the data. Prediction accuracy was measured using an accuracy and kappa coefficient from a confusion matrix. We summed the prediction of sub-images and determined the total average prediction accuracy. Training accuracy was 100% and the test accuracy was 86%, indicating comparably good performance using the CNN. This study provides classification potential for predicting the marbling grade using color images and a convolutional neural network algorithm.
Purpose: This study aimed to identify the differences in pre-hospital and in-hospital triage (pre-hospital triage and KTAS(Korean Triage and Acuity Scale)) of patients with abdominal pain and the characteristics of high hospitalization probability in the treatment results. Methods: We analyzed 941 people who visited the area C emergency center for 2 years from January 2017 to December 2018. The collected data were analyzed using SPSS 26. Results: Among the transfer hospitals, 84.8% (798) of patients were selected by the 119 rescue service, and the most common diagnosis was simple abdominal pain (46.5%, 438 patients). A total of 50.7% (477) of patients classified as severe pre-hospital cases changed to mild in-hospital cases. There was a difference of 5.3% (50 cases) in cases where patients classified as mild pre-hospital were changed to severe in-hospital cases. The Kappa coefficient did not match with 0.04 (p=.051). Pre-hospital overtriage was 58.2% (548 cases), and 71.2% (670) of patients were discharged from the emergency room as a result of the treatment. Conclusion: The results of this study showed that pre-hospital and in-hospital triage were not consistent. The rates of pre-hospital overtriage were quite high. Most patients with abdominal pain were classified as mild cases, and pre-hospital triage classifiers should be trained to reduce errors in selecting transfer hospitals.
Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.
Background: This study was designed to evaluate and compare the diagnostic value of magnetic resonance imaging (MRI) and indirect magnetic resonance arthrography (I-MRA) imaging with those of arthroscopy and each other. Methods: This descriptive-analytical study was conducted in 2020. All patients who tested positive for labrum lesions during that year were included in the study. The patients underwent conservative treatment for 6 weeks. In the event of no response to conservative treatment, MRI and I-MRA imaging were conducted, and the patients underwent arthroscopy to determine their ultimate diagnosis and treatment plan. Imaging results were assessed at a 1-week interval by an experienced musculoskeletal radiologist. Image interpretation results and arthroscopy were recorded in the data collection form. Results: Overall, 35 patients comprised the study. Based on the kappa coefficient, the results indicate that the results of both imaging methods are in agreement with the arthroscopic findings, but the I-MRA consensus rate is higher than that of MRI (0.612±0.157 and 0.749±0.101 vs. 0.449±0.160 and 0.603±0.113). The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of MRI in detecting labrum tears were 77.77%, 75.00%, 91.30%, 50.00%, and 77.14%, respectively, and those of I-MRA were 88.88%, 75.00%, 92.30%, 66.66%, and 85.71%. Conclusions: Here, I-MRA showed higher diagnostic value than MRI for labral tears. Therefore, it is recommended that I-MRA be used instead of MRI if there is an indication for potential labrum lesions.
Ji, Sumin;Yang, Yeseul;Jeong, Yeji;Hwang, Sung-Hyun;Kim, Myung-Chul;Kim, Yongbaek
Journal of Veterinary Science
/
v.22
no.1
/
pp.14.1-14.11
/
2021
Background: Quantitation of urine protein is important in dogs with chronic kidney disease. Various analyzers are used to measure urine protein-to-creatinine ratios (UPCR). Objectives: This study aimed to compare the UPCR obtained by three types of analyzers (automated wet chemistry analyzer, in-house dry chemistry analyzer, and dipstick reading device) and investigate whether the differences could affect clinical decision process. Methods: Urine samples were collected from 115 dogs. UPCR values were obtained using three analyzers. Bland-Altman and Passing Bablok tests were used to analyze agreement between the UPCR values. Urine samples were classified as normal or proteinuria based on the UPCR values obtained by each analyzer and concordance in the classification evaluated with Cohen's kappa coefficient. Results: Passing and Bablok regression showed that there were proportional as well as constant difference between UPCR values obtained by a dipstick reading device and those obtained by the other analyzers. The concordance in the classification of proteinuria was very high (κ = 0.82) between the automated wet chemistry analyzer and in-house dry chemistry analyzer, while the dipstick reading device showed moderate concordance with the automated wet chemistry analyzer (κ = 0.52) and in-house dry chemistry analyzer (κ = 0.53). Conclusions: Although the urine dipstick test is simple and a widely used point-of-care test, our results indicate that UPCR values obtained by the dipstick test are not appropriate for clinical use. Inter-instrumental variability may affect clinical decision process based on UPCR values and should be emphasized in veterinary practice.
Kyungjin Lee;Seo-Yul Kim;Kyeong-Mee Park;Sujin Yang;Kee-Deog Kim;Wonse Park
Journal of Dental Anesthesia and Pain Medicine
/
v.23
no.1
/
pp.9-17
/
2023
Background: Dental evaluation and protection are important for preventing traumatic dental injuries when patients are under general anesthesia. The objective of the present study was to develop a questionnaire based on dentition-related risk factors that could serve as a valuable tool for dental evaluation and documentation. Methods: We developed a questionnaire for dental evaluation before administration of general anesthesia, investigated the association between patient-and-dentist responses and mouthguard fabrication, and assessed response agreement between 100 patients. Results: Protective mouthguards were fabricated for 27 patients who were identified as having a high risk of dental injury. There was a strong association between dentists' responses and mouthguard fabrication, depending on the general oral health status, use of ceramic prosthesis, presence of masticatory pain related to periodontal diseases, gingival edema, and implants (P < 0.05). Response agreement between patients and dentists for items related to dental pain, loss of dental pulp vitality, root canal therapy, dental trauma, aesthetic prosthesis, tooth mobility, and implant prosthesis was high (Cohen's kappa coefficient κ ≥ 0.6). Conclusions: A high agreement was observed between patient-dentist responses and a strong association with mouthguard fabrication for items pertaining to ceramic prosthesis, masticatory pain, and dental implants. Patients with a "yes" response to these items are recommended to undergo a dental evaluation and use a dental protective device while under general anesthesia.
Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.
Crop classification plays a vitalrole in monitoring agricultural landscapes and enhancing food production. In this study, we explore the effectiveness of Long Short-Term Memory (LSTM) models for crop classification, focusing on distinguishing between apple and rice crops. The aim wasto overcome the challenges associatedwith finding phenology-based classification thresholds by utilizing LSTM to capture the entire Normalized Difference Vegetation Index (NDVI)trend. Our methodology involvestraining the LSTM model using a reference site and applying it to three separate three test sites. Firstly, we generated 25 NDVI imagesfrom the Sentinel-2A data. Aftersegmenting study areas, we calculated the mean NDVI values for each segment. For the reference area, employed a training approach utilizing the NDVI trend line. This trend line served as the basis for training our crop classification model. Following the training phase, we applied the trained model to three separate test sites. The results demonstrated a high overall accuracy of 0.92 and a kappa coefficient of 0.85 for the reference site. The overall accuracies for the test sites were also favorable, ranging from 0.88 to 0.92, indicating successful classification outcomes. We also found that certain phenological metrics can be less effective in crop classification therefore limitations of relying solely on phenological map thresholds and emphasizes the challenges in detecting phenology in real-time, particularly in the early stages of crops. Our study demonstrates the potential of LSTM models in crop classification tasks, showcasing their ability to capture temporal dependencies and analyze timeseriesremote sensing data.While limitations exist in capturing specific phenological events, the integration of alternative approaches holds promise for enhancing classification accuracy. By leveraging advanced techniques and considering the specific challenges of agricultural landscapes, we can continue to refine crop classification models and support agricultural management practices.
Purpose: This study assessed the diagnostic performance of stitched and non-stitched cross-sectional cone-beam computed tomography (CBCT) images of non-displaced ovine mandibular fractures. Materials and Methods: In this ex vivo study, non-displaced fractures were artificially created in 10 ovine mandibles (20 hemi-mandibles) using a hammer. The control group comprised 8 hemi-mandibles. The non-displaced fracture lines were oblique or vertical, <0.5 mm wide, 10-20 mm long, and only in the buccal or lingual cortex. Fracture lines in the ramus and posterior mandible were created to be at the interface or borders of the 2 stitched images. CBCT images were obtained from the specimens with an 80 mm×80 mm field of view before and after fracture induction. OnDemand software (Cybermed, Seoul, Korea) was used for stitching the CBCT images. Four observers evaluated 56 (28 stitched and 28 non-stitched) images to detect fracture lines. The diagnostic performance of stitched and non-stitched images was assessed by calculating the area under the receiver operating characteristic curve (AUC). Sensitivity and specificity values were also calculated (alpha=0.05). Results: The AUC was calculated to be 0.862 and 0.825 for the stitched and non-stitched images, respectively (P=0.747). The sensitivity and specificity were 90% and 75% for the non-stitched images and 85% and 87% for the stitched images, respectively. The inter-observer reliability was shown by a Fleiss kappa coefficient of 0.79, indicating good agreement. Conclusion: No significant difference was found in the diagnostic performance of stitched and non-stitched cross-sectional CBCT images of non-displaced fractures of the ovine mandible.
Purpose: This study aimed to assess the performance of 2-dimensional (2D) imaging with microscopy coils in delineating teeth and periodontal tissues compared with conventional 3-dimensional(3D) imaging on a 3 T magnetic resonance imaging (MRI) unit. Materials and Methods: Twelve healthy participants (4 men and 8 women; mean age: 25.6 years; range: 20-52 years) with no dental symptoms were included. The left mandibular first molars and surrounding periodontal tissues were examined using the following 2 sequences: 2D proton density-weighted (PDw) images and 3D enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) images. Two-dimensional MRI images were taken using a 3 T MRI unit and a 47 mm microscopy coil, while 3D MRI imaging used a 3 T MRI unit and head-neck coil. Oral radiologists assessed dental and periodontal structures using a 4-point Likert scale. Inter- and intra-observer agreement was determined using the weighted kappa coefficient. The Wilcoxon signed-rank test was used to compare 2D-PDw and 3D-eTHRIVE images. Results: Qualitative analysis showed significantly better visualization scores for 2D-PDw imaging than for 3D-eTHRIVE imaging (Wilcoxon signed-rank test). 2D-PDw images provided improved visibility of the tooth, root dental pulp, periodontal ligament, lamina dura, coronal dental pulp, gingiva, and nutrient tract. Inter-observer reliability ranged from moderate agreement to almost perfect agreement, and intra-observer agreement was in a similar range. Conclusion: Two-dimensional-PDw images acquired using a 3 T MRI unit and microscopy coil effectively visualized nearly all aspects of teeth and periodontal tissues.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.