• 제목/요약/키워드: Kangwon area

Search Result 1,902, Processing Time 0.02 seconds

Effects of Fire Retardant Treatment on Mechanical Properties and Fire Retardancy of Particleboard and Complyboard (내화처리(耐火處理)가 파아티클보오드와 콤플라이보오드의 기계적성질(機械的性質) 및 내화도(耐火度)에 미치는 영향(影響))

  • Kwon, Jin-Heon;Lee, Phll-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.3-57
    • /
    • 1985
  • This research was conducted to examine the feasibility of developing fire retardant particleboard and complyboard. Particleboard were manufactured using meranti particle(Shorea spp.)made with Pallmann chipper, and complyboard meranti particle and apitong veneer (Dipterocarpus spp.). Particles were passed through 4mm (6 mesh) and retained on 1mm (25 mesh). Urea formaldehyde resin was added 10 percent on ovendry weight of particle. Face veneer for complyboard was 0.9, 1.6 and 2.3mm in thickness and spread with 36 g/(30.48 cm)$^2$ glue on one side. Veneers were soaked with 10 percent solution of five fire retardant chemicals (diammonium phosphate, ammonium sulfate, monoammonium phosphate, Pyresote and Minalith), and particles with 5, 10, 15 and 20 percent solution of five chemicals. Particleboard and complyboard were evaluated on physical and mechanical properties, and fire retardancy. The results obtained were summarized as follows. 1. Among five fire retardant chemicals treated to particleboard and complyboard, the retention of ammonium sulfate in 5 percent solution showed the lowest as 1.39 kg/(30.48 cm)$^3$ exceeding the minimum retention of 1.125 kg/(30.48 cm)$^3$ recommended by Forest Products Laboratory and Koch. 2. Particleboard and complyboard treated with diammonium phosphate showed higher modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength and screw holding power than those with the other chemicals. 3. MOR and MOE of complyboard treated with fire retardant chemicals were greater than those of fire retardant particleboard. 4. Thickness swelling of fire retardant complyboard was lower than that of fire retardant particleboard. 5. The moisture content of the boards treated with Pyresote and Minalith increased and with monoammonium phosphate reduced. 6. Fire retardant particleboard showed no ignition, and fire retardant complyboard started ignition, but time required to ignite was prolonged comparing the controlboard. Complyboard with only shell veneer treated showed ignition and lingering flame, but lingering flame time was shorter than controlboard. Complyboard with treated both core and veneer showed ignition but not lingering flame. 7. Flame length, carbonized area and weight loss were smaller than controlboard but had no significant difference among chemicals treated. 8. Temperature of unexposed surface of fire retardant particleboard was lowered with the increasing concentration of five chemicals. 9. Temperature of unexposed surface of fire retardant particleboard was lowered with the highest in Pyresote and the lowest in Minalith. 10. Temperature of unexposed surface of fire retardant complyboard was lower than that of controlboard.

  • PDF

Diagenetic History of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea (강원도 정선 지역 오르도비스기 정선석회암의 속성 역사)

  • Bong, Lyon-Sik;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.449-468
    • /
    • 2000
  • The Ordovician Chongson Limestone deposited in the carbonate ramp to the rimmed shelf shows diverse diagenetic features. The marine diagenetic feature appears as isopachous cements surrounding ooids and peloids. Meteoric diagenetic features are recrystallized finely and coarsely crystalline calcite, evaporite casts filled with calcite, and isopachous sparry calcite surrounding ooid grains. Shallow burial diagenetic features include wispy seam, microstylolite, and dissolution seam whereas deep burial features include stylolite, burial cements. blocky calcite with twin lamellae, and poikilotopic calcite. Dolomites consist of very finely to finely crystalline mosaic dolomite formed as supratidal dolomite, disseminated dolomite of diverse origin, patchy dolomite formed from bioturbated mottles, and saddle dolomite of burial origin. Silicified features include calcite-replacing quartz and fracture-filling megaquartz. Burial cements characterized by poikilotopic texture show ${\delta}^{18}$O value of -10.4 %$_o$ PDB, ${\delta}^{13}$C value of -1.0%$_o$ PDB and 504ppm Sr, 3643ppm Fe, and 152ppm Mn concentrations. Finely and coarsely crystalline limestones show similar ${\delta}^{18}$O and ${\delta}^{13}$C value to those of burial cements; however, they show lower Sr and higher Fe and Mn concentrations than burial cements. This suggests that very finely and coarsely crystalline limestones were recrystallized in freshwater and then they were readjusted geochemically in the burial setting whereas the burial cements were formed in relatively high temperature and low water/rock ratio conditions. Very finely and finely crystalline mosaic dolomites with ${\delta}^{18}$O value of -8.2%$_o$ PDB, ${\delta}^{13}$C value of -1.9 %$_o$ PDB, and 213ppm Sr, 3654ppm Fe, and 114ppm Mn concentrations, respectively are interpreted to have been formed penecontemporaneously in supratidal flat and then recrystallized in the low water/rock ratio burial environment. Geochemical data suggest that the low water/rock ratio burial environment was the dominant diagenetic setting in the Chongson Limestone. The Chongson Limestone has experienced marine and meteoric diagenesis during early diagenesis. With deposition of Haengmae and Hoedongri formations part of the Chongson Limestone was buried beneath these formations and it experienced shallow burial diagenesis. During the Devonian the Chongson Limestone was tectonically deformed and subaerially exposed. During the Carboniferous to the Permian about 3.3km thick Pyongan Supergroup was deposited on the Chongson Limestone and the Chongson Limestone was in deep burial depths and stylolite, burial cements, blocky calcite and saddle dolomite were formed. After this burial event the Chongson Limestone was subaerially exposed during the Mesozoic and Cenozoic by three periods of tectonic disturbance including Songnim, Daebo and Bulguksa disturbance. Since the Bulguksa disturbance during Cretaceous and early Tertiary the Chongson Limestone has been subaerially exposed.

  • PDF