• Title/Summary/Keyword: Kaiser-Meyer-Olkin (KMO) Test

Search Result 3, Processing Time 0.018 seconds

An Exploratory Research on the Implementation of Corporate Social Responsibility (CSR) in the Real Estate Sector of UAE: A Dyadic Perspective

  • THOMAS, Suja Sarah;POTLURI, Rajasekhara Mouly
    • Journal of Distribution Science
    • /
    • v.18 no.10
    • /
    • pp.101-110
    • /
    • 2020
  • Purpose: The study investigates the implementation of corporate social responsibility (CSR) in the real estate sector of the UAE by collecting the opinions of both the real estate companies and different tenants on the execution of CSR. Research design, data, and methodology: Using a sample of 300 different types of UAE real estate consumers and twenty real estate firms, the researchers collected the opinions of targeted subjects by administering two types of questionnaires. The Cronbach's Alpha and the Kaiser-Meyer-Olkin (KMO) tests were employed to check the internal consistency and validity of the questionnaires. The selected hypotheses were tested using the Kruskal-Wallis (K-W) hypothesis testing technique. Results: The findings revealed that all types of UAE real estate consumers expressed their discontentment over the implementation of socially responsible actions by the real estate companies. Whereas UAE real estate companies expressed their confidence in the ideal implementation of social actions towards all stakeholders in general and tenants. Conclusion: Even though more than 50 percent of realty customers are dissatisfied with the company's implementation of CSR, a little over 54.80 percent are willing to recommend the company to their family and friends. Implications have been provided for UAE real estate companies who wish to promote their business to all categories of UAE real estate consumers successfully.

Multiple Regression Equations for Estimating Water Supply Capacities of Dams Considering Influencing Factors (영향요인을 고려한 댐 용수공급능력 추정 회귀모형)

  • Kang, Min Goo;Lee, Gwang Man
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1131-1141
    • /
    • 2012
  • In this study, factors that influence water supply capacities of dams are extracted using factor analysis, and multiple regression equations for estimating water supply capacities of dams are developed using the analysis results. Twenty-one multi-purpose dams and twelve Municipal and Industrial (M&I) water supply dams are selected for case studies, and eight variables influencing water supply capacities of dams, namely: watershed area, inflow, effective reservoir storage, grade on amount of M&I water supply, grade on amount of agricultural water supply, grade on amount of in-stream flow supply, grade on river administration, and grade on average rainfall, are determined. Two case studies for multi-purpose dams and M&I water supply dams are performed, employing factor analysis, respectively. For the two cases, preliminary tests, such as reviewing matrix of correlation coefficient, Bartlett's test of sphericity, and Kaiser-Meyer-Olkin (KMO) test, are conducted to evaluate the suitability of the variables for factor analysis. In case of multi-purpose dams, variables are grouped into three factors; M&I water supply dams, two factors. The factors are rotated using Varimax method, and then factor loading of each variable is computed. The results show that the variables influencing water supply capacities of dams are reasonably selected and appropriately grouped into factors. In addition, multiple regression equations for predicting the amounts of annual water supply of dams are established using the factor scores as explanatory variables, it is identified that the models' accuracies are high, and their applications to determining effective storage capacity of a dam during dam planning and design steps are presented. Consequently, it is thought that the variables and factors are useful for dam planning and dam design.

Development of a Integrated Indicator System for Evaluating the State of Watershed Management in the Context of River Basin Management Using Factor Analysis (요인분석을 이용한 수계 관리 맥락에서 유역관리 상태를 평가하기 위한 통합지수 개발)

  • Kang, Min-Goo;Lee, Kwang-Man;Ko, Ick-Hwan;Jeong, Chan-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.277-291
    • /
    • 2008
  • In order to carry out river basin management, it is necessary to evaluate the state of the river basin and make site-specific measures on the basis of management goals and objectives. A river basin is divided into several watersheds, which are composed of several components: water resources, social and economic systems, law and institution, user, land, ecosystems, etc. They are connected among them and form network holistically. In this study, a methodology for evaluating watershed management was developed by consideration of the various features of a watershed system. This methodology employed factor analysis to develop sub-indexes for evaluating water use management, environment and ecosystem management, and flood management in a watershed. To do this, first, the related data were gathered and classified into six groups that are the components of watershed systems. Second, in all sub-indexes, preliminary tests such as KMO (Kaiser-Meyer-Olkin) measure of sampling adequacy and Bartlett's test of sphericity were conducted to check the data's acceptability to factor analysis, respectively. Third, variables related to each sub-index were grouped into three factors by consideration of statistic characteristics, respectively. These factors became indicators and were named, taking into account the relationship and the characteristics of included variables. In order to check the study results, the computed factor loadings of each variable were reviewed, and correlation analysis among factor scores was fulfilled. It was revealed that each factor score of factors in a sub-index was not correlated, and grouping variables by factor analysis was appropriate. And, it was thought that this indicator system would be applied effectively to evaluating the states of watershed management.