• Title/Summary/Keyword: Kaempferol-3-O-glucoside

Search Result 61, Processing Time 0.024 seconds

Flavonoids from Leaves and Exocarps of the Grape Kyoho

  • Park, Hye-Jeong;Cha, Hyeon-Cheol
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.327-330
    • /
    • 2003
  • We analyzed and compared profiles of flavonols extracted from leaves and exocarps of the grape Kyoho by TLC, HPLC and UV spectrophotometry. In the exocarps, quercetin 3-O-glucoside was the main compound while isorhamnetin 3-O-glycoside (I) was present in minor amounts. In leaves, on the other hand, quercetin 3-O-glucoside and quercetin 3-O-glucoside-7-O-glucronide were the major compounds while isorhamnetin 3-O-glycoside (II) and kaempferol 3, 7-O-diglycoside were present in minor amounts.

Phenolic Compounds from Orostachys japonicus having Anti-HIV-1 Protease Activity

  • Park, Ju-Gwon;Park, Jong-Cheol;Hur, Jong-Moon;Park, Sung-Jong;Choi, Da-Rae;Shin, Dong-Young;Park, Ky-Young;Cho, Hyun-Wook;Kim, Moon-Sung
    • Natural Product Sciences
    • /
    • v.6 no.3
    • /
    • pp.117-121
    • /
    • 2000
  • The water extract of the aerial parts of Orostachys japonicus A. Berger showed the inhibitory activity against HIV-1 protease. From the same parts of O. Japanicus, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid and methyl gallate, together with flavonoids, kaempferol, quercetin, kaempferol $3-O-{\beta}-D-glucoside$, kaempferol $3-O-{\beta}-D-galactoside$ and quercetin $3-O-{\beta}-D-glucoside$ were isolated and characterized by spectral data.

  • PDF

Phytochemical Constituents of Urtica angustifolia Fisch

  • Kwon, Hak-Cheol;Kwak, Jong-Hwan;Lee, Kang-Ro;Zee, Ok-Pyo;Yu, Seung-Jo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.168-168
    • /
    • 1996
  • 가는잎쇄기풀(Urtica angustifolia Fisch.)은 쇄기풀과(Urticaceae)에 속하는 다년생 초본으로 중약 또는 민간에서 동속 근연식물과 함께 전초를 담마라하여 류마치스성 동통, 산후의 산풍, 소아의 추풍, 경풍,담마진의 치료에 사용되고 있다. Rat에서 실험적 항당뇨 효과를 검토해본 결과 혈당강하 작용이 있는 본 식물로부터 그 혈당강하 성분의 분리에 앞서 식물화학 성분을 규명하고자 본 실험에 착수하였다. 가는잎쇄기풀 전초의 MeOH ex.를 CH$_2$Cl$_2$, EtOAc, n-BuOT 및 $H_2O$로 분획하고 각종 column chromatography를 통하여 다수의 화합물을 분리하였다. 각 화합물은 이화학적 성상 및 spectral data로부터 scopoletin, esculetin dimethyl ether(scoparone), sterol mixture, $\beta$-sitosteryl-3-o-glucoside, kaempferol-3-o-glucoside, quercetin-3-o-glucoside, kaempferol-3-o-rutinoside로 확인하였으며 그 외 다수의 화합물은 그 구조를 규명중이다.

  • PDF

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

Flavonoids Constituents of Duchesnea chrysantha (사매의 플라보노이드 성분)

  • Liu, Qing;Ahn, Jong-Hoon;Kim, Seon-Beom;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • In the course of screening pancreatic lipase inhibitory activity, total methanolic extract and EtOAc-soluble fraction of Duchesnea chrysantha showed significant inhibitory activity. Further fractionation and isolation of the EtOAc-soluble fraction resulted in five compounds, which were identified as trans-tiliroside (1), isovitexin (2), kaempferol-8-O-${\beta}$-glucoside (3), kaempferol-3-O-${\beta}$-glucoside (4) and quercetin-3-O-${\beta}$-glucoside (5). All the five flavonoids derivatives were first reported from this plant but showed weak inhibitory effects on pancreatic lipase activity.

Flavonoids from Salix hallaisanensis Leaves (떡버들 잎의 플라보노이드)

  • Oh, Mi-Hyun;Ham, In-Hye;Chung, Sung-Hee;Whang, Wan-Kyun
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4 s.143
    • /
    • pp.282-290
    • /
    • 2005
  • The MeOH extract of the the leaves of Salix hallaisanensis (Salicaceae) was partitioned successively with $CHCl_3$, 20% MeOH, 40% MeOH and 60% MeOH solution. From the fractions obtained, 9 compounds were isolated, $diosmetin-7-O-{\beta}-d-glucoside$ (I), $diosmetin-7-O-{\beta}-D-glucosyl-(1{\rightarrow)6)-{\beta}-d-glucoside$ (II), $diosmetin-7-O-{\beta}-d-xylosyl-(1{\rightarrow}6)-{\beta}-D-glucoside$ (III), $quercetin-3-O-{\beta}-d-galactoside$ (hyperoside) (IV), $quercetin-3-O-{\alpha}-l-rhamnosyl-(1{\rightarrow}6)-{\beta}-D-glucoside(rutin)$ (V), luteolin (VI), $luteolin-7-O-{\beta}-d-glucoside$ (VII), $kaempferol-3-O-{\alpha}-l-rhamnosyl-(1{\rightarrow}6)-{\beta}-D-glucoside$ (VIII), and (+)-catechin (IX).

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.

A Novel Benzoyl Glucoside and Phenolic Compounds from the Leaves of Camellia japonica

  • Cho, Jeong-Yong;Ji, Soo-Hyun;Moon, Jae-Hak;Lee, Kye-Han;Jung, Kyung-Hee;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1060-1065
    • /
    • 2008
  • A novel benzoyl glucoside (4) and 13 known phenolic compounds were isolated from the leaves of Camellia japonica by a guided 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The structure of 4 was determined to be 4-hydroxy-2-methoxyphenol 1-O-$\beta$-D-(6'-O-p-hydroxylbenzoyl)-glucopyranoside (camelliadiphenoside). The 13 known compounds were identified as (E)-coniferyl alcohol (1), (-)-epicatechin (2), 4-hydroxyphenol 1-O-$\beta$-D-(6-O-p-hydroxybenzoyl) glucopyranoside (3), naringenin 7-O-$\beta$-D-glucopyranoside (5), quercetin 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (6), kaempferol 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (7), (+)-catechin (8), 1,6-di-O-p-hydroxybenzoyl-$\beta$-D-glucopyranoside (9), phloretin 2'-O-$\beta$-D-glucopyranoside (10), quercetin 3-O-$\beta$-D-glucopyranoside (11), quercetin 3-O-$\beta$-D-galactopyranoside (12), kaempferol 3-O-$\beta$-D-galactopyranoside (13), and kaempferol 3-O-$\beta$-D-glucopyranoside (14). Their chemical structures were determined by the spectroscopic data of fast atom bondardment mass spectrometry (FABMS) and nuclear magnetic resonance (NMR). Flavonoids having the catechol moiety showed significantly higher DPPH radical scavenging activity than other isolated compounds having monohydroxy phenyl group.

Formation of Flavone Di-O-Glucosides Using a Glycosyltransferase from Bacillus cereus

  • Ahn, Byoung-Chan;Kim, Bong-Gyu;Jeon, Young-Min;Lee, Eun-Jeong;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.387-390
    • /
    • 2009
  • Microbial UDP-glycosyltransferases can convert many small lipophilic compounds into glycons using uridine-diphosphate-activated sugars. The glycosylation of flavonoids affects solubility, stability, and bioavailability. The gene encoding the UDP-glycosyltransferase from Bacillus cereus, BcGT-3, was cloned by PCR and sequenced. BcGT-3 was expressed in Escherichia coli BL21(DE3) with a glutathione S-transferase tag and purified using a glutathione S-transferase affinity column. BcGT-3 was tested for activity on several substrates including genistein, kaempferol, luteolin, naringenin, and quercetin. Flavonols were the best substrates for BcGT-3. The enzyme dominantly glycosylated the 3-hydroxyl group, but the 7-hydroxyl group was glycosylated when the 3-hydroxyl group was not available. The kaempferol reaction products were identified as kaempferol-3-O-glucoside and kaempferol-3,7-O-diglucoside. Kaempferol was the most effective substrate tested. Based on HPLC, LC/MS, and NMR analyses of the reaction products, we conclude that BcGT-3 can be used for the synthesis of kaempferol 3,7-O-diglucose.

Hybridization of Quercus aliena Blume and Q. serrata Murray in Korea - Analyses of Morphological variation and Flavonoid chemistry -

  • Park, Jin Hee;Park, Chong-Wook
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.145-161
    • /
    • 2015
  • This research was conducted in order to understand the hybridization between Quercus aliena Blume and Q. serrata Murray in Korea which show wide range of morphological variations within species and interspecific variations of diverse overlapping characteristics caused by hybridization. Morphological analysis (principal components analysis; PCA) of 116 individuals representing two species and their intermediates were performed. As a result, two species were clearly distinguished in terms of morphology, and intermediate morpho-types assumed to be hybrids between the two species were mostly located in the middle of each parent species in the plot of the principal components analysis. There was a clear distinction between two species in trichome distribution pattern which is an important diagnostic character in taxonomy of genus Quercus, whereas intermediate morpho-types showed intermediate state between two species' trichome distributions. Forty-two individuals representing two species and their intermediates were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified: They were glycosylated derivatives of flavonols, kaempferol, quercetin, isorhamnetin and myricetin. The flavonoid constituents of Q. aliena were five glycosylated derivatives: kaempferol 3-O-galactoside, kaempferol 3-O-glucoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside, and Isorhamnetin 3-O-glucoside. The flavonoid constituents of Q. serrata had 20 diverse flavonol compounds including five flavonoid compounds found in Q. aliena. It was found that there is a clear difference in flavonoid constituents of Q. aliena and Q. serrata. Flavonoid chemistry is very useful in recognizing each species and putative hybrids. The flavonoid constituents of intermediates were a mixture of the two species' constituents and they generally showed similar characteristics to morpho-types. The hybrids between Q. aliena and Q. serrata showed morphologically and chemically diverse characteristics and it is assumed that there are frequent interspecific hybridization and introgression.