• Title/Summary/Keyword: Ka-대역

Search Result 238, Processing Time 0.022 seconds

Design of Double Balanced MMIC Mixer for Ka-band (Ka-band용 Double Balanced MMIC Mixer의 설계 및 제작)

  • 류근관
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 2004
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the schottky diode of InGaAs/CaAs p-HEMT process has been developed for receiver down converter of Ka-band. A different approach of MMIC mixer structure is applied for reducing the chip size by the exchange of ports between IF and LO. This MMIC covers with RF (30.6∼31.0㎓)and IF (20.8∼21.2㎓). According to the on-wafer measurement, the MMIC mixer with miniature size of 3.0mm1.5mm demonstrates conversion loss below 7.8㏈, LO-to-RF isolation above 27㏈, LO-to-IF isolation above 19㏈ and RF-to-IF isolation above 39㏈, respectively.

The Design of Elliptical Dual Offset Gregorian Antenna for Satellite Communication on Ka-band (Ka대역 위성통신용 타원형 이중옵셋 그레고리안 안테나 설계)

  • Kim, Chun-Won;Cheong, Chi-Hyun;Kim, Kun-Woo;Lee, Seong-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.811-818
    • /
    • 2013
  • In this paper, we have designed the elliptical dual offset gregorian antenna which can use Ka band earth station antennas in the fixed-satellite service. The structure of antenna is increasing the antenna gain by decreasing blockage areas and decreasing wind effects by shortening height of the antenna. The corrugate horn antenna for this antenna has symmetric radiation patterns and low side lobe levels that can meet ITU-R envelope. The distribution of electric field on a aperture of main reflector is calculated by an ray-tracing method that use the radiation pattern of the feed horn. The final geometric of antena is decided by choosing the distribution that comply with antenna requirement. The FEKO analysed electrical performance of this antenna. The fabricated antenna has 45.0dBi(@30.0GHz)/41.7dBi(@20.2GHz), high efficiency and low side lobe level that meet ITU-R S. 580-6 envelope.

Development of Power Supply for Ka-band Tracking Radars (Ka-대역 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.99-103
    • /
    • 2022
  • Millimeter-wave tracking radars operate in various environmental restrictions, thus they demand stable power sources with low noise level under high fluctuation of input voltage. This paper presents the design and implementation of the compact power supply with max power of 727 W for Ka-band tracking radar applications. To meet requirements of voltage accuracy and system efficiency for transceiver circuits, upper plates of buck converters are attached on the covers of power supply for efficient heat dissipation. The proposed power supply achieves system efficiency of 88.4 %, output voltage accuracy of ±2 % and noise level of <1% under full load conditions.

Ka-Band Antenna Design Using the Reflector Shaping for the Communications & Broadcasting Satellite (반사판 표면성형기법을 적용한 통신방송위성 Ka대역 안테나의 설계)

  • Han, Jae-Hung;Yun, So-Hyeun;Park, Jong-Heung;Lee, Seong-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.88-94
    • /
    • 2004
  • The electrical design of the Ka-band antenna for the domestic Communications and Broadcasting Satellite (CBS) is described. The antenna has the offset Gregorian structure and is installed on the Earth-facing panel of the satellite. The electrical performance specifications for the antenna were determined from the required EIRP and G/T through the payload level performance analysis. This paper utilized the reflector shaping technology for the trade-off among the major performance parameters, resulting in compliance of all the parameters. The designed antenna shows 37.95 dBi EOC (End of Coverage) gain and 28.7 dB sidelobe isolation for transmit band, and 37.49 dBi EOC gain and 31.1 dB sidelobe isolation for receive band, The electrical performances of the antenna have been verified via the electrical testing of a manufactured EQM (Engineering Qualification Model) antenna.

Design of Maritime Satellite Communication Systems Sharing Frequency with DVB-S2 (DVB-S2와 주파수 공유하는 해양 위성 통신 시스템 설계)

  • Ryu, Joon-Gyu;Oh, Deock-Gil;Yu, Heejung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.75-80
    • /
    • 2013
  • In this paper, the Ka-band maritime satellite communication systems for mobile terminals are proposed. The design includes the link budget analysis, determination of modulation and coding schemes and the overall structure of a transmitter. To avoid the harmful effects on the existing DVB-S2 services, the proposed maritime satellite system using the same spectrum with DVB-S2 at the same time employs the very wideband spreading transmission. Additionally, omni-directional low-gain antennas should be equipped in a mobile terminal to reduce the system cost. These two considerations limit the maximum transmission rate of the proposed system. Due to the limitations, the proposed system includes 36 dB or 39 dB spreading gain depending on the modulation scheme and a link-adaptive repetition method depending on the level of rain attenuation. To support short packets with minimal performance loss, the turbo code used in 3GPP instead of LDPC(low density parity check code) is adopted. By combining them, the overall structure of low-rate maritime satellite communication system is designed.

A Study on Development of the High-Power Low-Loss Waveguide Circulator for Ka-band Millimeter-Wave Seeker (밀리미터파대역(Ka-대역)탐색기용 고 전력 저 손실 도파관 순환기 개발에 관한 연구)

  • Jung, Chae-Hyun;Han, Sung-Min;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.83-88
    • /
    • 2017
  • In this paper, a 3-port waveguide circulator of Ka-band millimeter-wave for isolation between transmit channel and receive channel at high power transmit mode is designed and fabricated for the seeker of the guided missile and circulator performance is verified through the S-parameter, high power and operation temperature test. At the configuration design, interface design between a seeker antenna and the circulator is considered and half-height of standard waveguide is applied for minimum and light weight body. The shape of permanent magnet and ferrite is optimized by simulation and tuning dielectrics at each port are placed for the best performance. In Fc(center frequency)${\pm}1000MHz$, designed waveguide circulator has below -20 dB return loss, below 0.5 dB insertion loss and below -23 dB isolation. It is found that circulator characteristics is similar to design results.

A Study on the High-power Low-loss Dual Axes Waveguide Rotary Joint for Ka-Band Millimeter-Wave Small Radar (밀리미터파대역(Ka-대역)소형 레이더용 고 전력 저 손실 2축 도파관 로터리 조인트 연구)

  • Jung, Chae-Hyun;Sung, Jong-Hyun;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.91-96
    • /
    • 2018
  • In this paper, dual axes waveguide rotary joint, which operates at high power and has low loss characteristic, is designed and fabricated for a Ka-band millimeter-wave small radar. Its electrical performance is verified through the S-parameter at room temperature, high power and operation temperature test. Rotary joint functionally consists of the mode converter transforming rectangular waveguide into circular waveguide and the choke at the rotation part. At the configuration design, linking a fixed transmitter to an antenna rotating dual axes electrically for minimum loss and light weight body are considered. In Fc(center frequency)${\pm}500MHz$, the designed rotary joint has VSWR 1.5:1 below return loss, -2.0 dB above insertion loss. It is found that rotary joint characteristics is similar to design results.

High-Isolation Ka-Band Power Combiner Using a Resistive Septum Inserted in a Slit of Waveguide (홈을 가진 도파관에 결합된 저항성 격막을 이용한 높은 격리도 특성의 Ka-대역 전력합성기)

  • Kim, Choul-Young;Shin, Im-Hyu;Lee, Man-Hee;Joo, Ji-Han;Lee, Sang-Joo;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • A high-isolation Ka-band WR-28 waveguide power combiner is designed and implemented using a resistive septum. The waveguide power combiner developed here is an E-plane T-junction type with a TaN resistive septum inserted in a slit of waveguide junction. The fabricated waveguide power combiner shows a return loss better than -20 dB and an insertion loss less than 0.1 dB. Also the measurement shows isolation levels of 20 dB or more almost all over the band and in particular 25 dB or more below 37 GHz. The amplitude and phase imbalance are measured to be less than 0.1 dB and $2.5^{\circ}$, respectively.

Phase Noise Evaluation of Multi-mode based-COMS Communication Transponder (다중모드 기반 천리안 위성통신 중계기의 위상잡음 특성 평가)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The COMS, which is a multi-purposed satellite that provide the oceanic measurement data and meterological image data, is operating since 2010. Ka-band satellite communication transponder in COMS gets the MSM function that can provide the required multi-beam and transmits the multi-mode signal with high data rate. The phase noise of COMS communication transponder can be increased because of several local oscillators for MSM function and the utilization of Ka-band frequency. The phase noise affects the performance for the multi-mode and high rate data based- transmission method, it is not possible to recover the transmission data in system with the high system phase noise. In this paper, the phase noise of COMS was measured and the effects of the measured phase noise are analysed and evaluated in the viewpoint of the noise bandwidth of transmission system, Also the transmission performances for multi-mode and high rate data are evaluated in the presence of COMS phase noise.