• Title/Summary/Keyword: KURT(KAERI Underground Research Tunnel)

Search Result 50, Processing Time 0.021 seconds

A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test (지하처분연구시설(KURT) 내 암반의 온도 분포에 관한 연구 : 시추공히터시험 결과의 검증)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kwon, Sang-Ki;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.297-307
    • /
    • 2013
  • In this study, the thermal analysis is carried out for a result of borehole heater test using ABAQUS ver 6.10 based on finite element analysis code. Thermal-mechanical rock properties as determined by laboratory tests before the in situ test and characteristics of the atmosphere at the test section are used as the initial condition. When comparing the results of the in situ test and thermal analysis, the temperature of C3 observation hole that is 0.9 m away from the heater showed very similar patterns and figures (about $1.3^{\circ}C$ difference). But the results of the A and B observation hole showed a significant difference around $15^{\circ}C{\sim}20^{\circ}C$. To find the reason for these results, the over-coring is carried out for the A1 and B1 observation holes. As a result of checking the excavated rock core with the naked eye, there is no problem on the number and position of the sensor as the test plan. However the state of cement injection in the observation hole is poor.

Thermal behavior of groundwater-saturated Korean buffer under the elevated temperature conditions: In-situ synchrotron X-ray powder diffraction study for the montmorillonite in Korean bentonite

  • Park, Tae-Jin;Seoung, Donghoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1511-1518
    • /
    • 2021
  • In most countries, the thermal criteria for the engineered barrier system (EBS) is set to below 100 ℃ due to the possible illitization in the buffer, which will likely be detrimental to the performance and safety of the repository. On the other hand, if the thermal criteria for the EBS increases, the disposal density and the cost-effectiveness for the high-level radioactive wastes will dramatically increase. Thus, fundamentals on the thermal behavior of the buffer under the elevated temperatures is of crucial importance. Yet, the behaviors at the elevated temperatures of the bentonite under groundwater-saturated conditions have not been reported to-date. Here, we have developed an in-situ synchrotron-based method for the thermal behavior study of the buffer under the elevated temperatures (25-250 ℃), investigated dspacings of the montmorillonite in the Korean bentonite (i.e., Ca-type) at dry and KURT (KAERI Underground Research Tunnel) groundwater-saturated conditions (KJ-ii-dry and KJ-ii-wet), and compared the behaviors with that of MX-80 (i.e., Na-type, MX-80-wet). The hydration states analyzed show tri-, bi-, and mono-hydrated at 25, 120, and 250 ℃, respectively for KJ-ii-wet, whereas tri-, mono-, and de-hydrated at 25, 150, and 250 ℃, respectively for MX-80-wet. The Korean bentonite starts losing the interlayered water at lower temperatures; however, holds them better at higher temperatures as compared with MX-80.

Production and Application of Domestic Input Data for Safety Assessment of Disposal (처분안전성평가를 위한 국내고유 입력자료의 확보와 적용)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Youn-Myoung;Ko, Nak-Youl;Jeong, Jong-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • To provide domestic values of input parameters in a safety assessment of radioactive waste disposal under domestic deep underground environments, various kinds of experiments have been carried out under KURT (KAERI Underground Research Tunnel) conditions. The input parameters were classified, and some of them were selected for this study by the criteria of importance. The domestic experimental data under KURT environments were given top priority in the data review process. Foreign data under similar conditions to KURT were also gathered. The collected data were arranged and the statistical calculations were processed. The properties and distribution of the data were explained and compared to foreign values in view of their validity. The following parameters were analysed: failure time and early time failure rate of a container, solubility of nuclides, porosity and density of the buffer, and distribution coefficients of nuclides in the geomedia, hydraulic conductivity, diffusion depth of nuclides, groundwater flow rate, fracture aperture, length of internal fracture, and width of faulted rock mass in the host rock.

Potential repository domain for A-KRS at KURT facility site (KURT 부지 조건에서 A-KRS 입지 영역 도출)

  • Kim, Kyung-Su;Park, Kyung-Woo;Kim, Geon-Young;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The potential repository domains for A-KRS (Advanced Korean Reference Disposal System for High Level Wastes) in geological characteristics of KURT (KAERI Underground Research Tunnel) facility site were proposed to develop a repository system design and to perform the safety assessment. The host rock of KURT facility site is one of major Mesozoic plutonic rocks in Korean peninsula, two-mica granite, which was influenced by hydrothermal alteration. The topographical features control the flow lines of surface and groundwater toward south-easterly and all waters discharge to Geum River. Fracture zones distributed in study site are classified into order 2 magnitude and their dominant orientations are N-S and E-W strike. From the geological features and fracture zones, the potential repository domains for A-KRS were determined spatially based on the following conditions: (1) fracture zone must not cross the repository; and (2) the repository must stay away from the fracture zones greater than 50 m. The western region of the fracture zones in the N-S direction with a depth below 200 m from the surface was sufficient for A-KRS repository. Because most of the fracture zones in N-S direction were inclined toward the east, we expected to find a homogeneous rock mass in the western region rather than in the eastern region. The lower left domain of potential domains has more suitable geological and hydrogeological conditions for A-KRS repository.

Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes (방사성폐기물 지하처분장에 대한 가상의 사례 연구를 위한 KURT 부지의 지하수 유동 모의)

  • Ko, Nak-Youl;Park, Kyung Woo;Kim, Kyung Su;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2012
  • Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite (KURT 화강암 내 우라늄의 지화학적 용출특성에 미치는 용존이온의 영향)

  • Cho, Wan Hyoung;Baik, Min Hoon;Ryu, Ji-Hun;Lee, Jae Kwang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2018
  • In order to understand the long-term behavior of radionuclides in granite environments, geochemical behavior characteristics of uranium in granitic host rock of KURT (KAERI Underground Research Tunnel) were investigated by dissolution experiment with different reaction time and solutions. In the dissolution experiment, significantly increased dissolution levels of uranium from granite powder samples were identified during the reaction time of 0~10 days for reaction solutions ($UD-CO_3$ and UD-Bg) containing a large amount of $CO_3{^{2-}}$. On the other hand, significantly increased dissolution levels of uranium were also identified for reaction solutions containing Na and Ca after 60 days. Dissolution of uranium continuously increased in reaction solutions of $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg ($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), and UD-Si ($10.47{\mu}g{\cdot}L^{-1}$) in the experimental period of ~270 days. However, after day 270, dissolution of uranium showed a decreasing tendency. This is thought to have occurred because existing uranium in granite samples reached the limit of dissolution by interaction with reaction solutions. Concentrations of dissolved uranium and points of maximum concentration value were found to differ depending on the $CO_3{^{2-}}$ presence in the mixed reaction solution and on the geochemical type of the water. It is estimated that differences in the reaction rate between the granite sample and the reaction solution are due to the influence of dissolved ions in the reaction solution.

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.

Solubilities and Major Species of Selenium and Technetium in the KURT Groundwater Conditions (KURT 지하수 조건에서 셀레늄과 테크네튬의 용해도 및 주요 화학종)

  • Kim, Seung-Soo;Min, Je-Ho;Baik, Min-Hoon;Kim, Gye-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • The long-lived fission products $^{79}Se$ and $^{99}Tc$ have been considered as the major concern nuclides for the disposal of radioactive waste because of their high solubilities and the existence of anionic species in natural water. In this study, the solubilities of $FeSe_2(s)$ and $TcO_2(s)$, known as respective Solubility Limiting Solid Phase (SLSP) of selenium and technetium, were measured in the KURT (KAERI Underground Research Tunnel) groundwater under various pH and redox conditions. And their solubilities and major species were also calculated using geochemical codes under conditions similar to experimental solutions. Experimental results and calculation for $FeSe_2$ show that the solubility of selenium was found to be below $1{\times}10^{-6}mol/L$ under the condition of pH 8~9.5 and Eh=-0.3~-0.4 V while the dominant species was identified as $HSe^-$. For $TcO_2$, the solubility of technetium was found to be $5{\times}10^{-8}{\sim}1{\times}10^{-9}mol/L$ in the solutions of pH 6~9.5 and Eh<-0.1 V, while the dominant species was $TcO(OH)_2$. However, when the Eh of the solution is -0.35 V, $TcO(OH)_3^-$ and $TcO_4^-$ are calculated as the dominant species at pH 10.5~12 and pH>12, respectively.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.